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I. INTRODUCTION

Motivation

Owing to their favorable performance characteristics, composite
materials have been gaining wide use in commercial, military and
spacecraft applications. Typical commercial applications include
building materials, sports equipment, and automobile parts such as
drive shafts, engines, leaf springs and wheels. The main appliications
of composite materials, however, have been in the aerospace and
defense related projects. Aircraft and spacecraft structures are
typically weight-sensitive and advanced composites with high strength-
to-weight and stiffness-to-weight ratios have become almost
indispensable in such structures; )

Spacecraft structures and equipment mounted in these ;tructures
are required to operate in hostile environments and to be squected to
a wide range of dynamic loads. When structural resonances are
excited, the dynamic loads can produce excessive vibration in the
structures and equipment. There is a need for the vibration of the
structures to decay as quickly as possible so that it will not affect
the normal working and utility of the structures and missidns.
Vibratién can be significantly reduced by increasing the damping in
the dominant modes through the application of active and passive

damping control devices.
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Active control can be used to suppress the vibration by the use
of certain active elements such as actuators which alter the dynamic
response of the structure. It requires the use of special purpose
hardware, and real-time control-design algorithms applicable to
individual structural components. Active vibration control technology
is still in its primitive stages of development and unfortunately,
feasible solutions are still not available to alleviate the vibration
problems of real-life complex space structures.

In passive control, energy dissipation can be achieved by
external add-on damping devices such as isolators or constrained
viscoelastic layers. Yet another source of passive damping in most
structures is provided by their joints and supports. The use of
passive damping treatments provides a simple and reliable solution for
vibration suppression, in 1imited frequency ranges. A balanced
combination of both active and passive damping is, however, Tikely to
be a more realistic and practical solution in future aerospace
structures than the use of active or passive control alone.

In any case, a detailed understanding of the inherent damping in
the material and the structural system is important. Little
information is available on material damping, especially for advanced
composite materials. It is difficult to obtain a good understanding
of the damping phenomena in a material or structure as there are many
mechanisms involved. A1l these mechanisms eventually involve the
conversion of mechanical energy into thermal energy. For composite
materials, the damping mechanisms, of course, are more complex because

several factors will influence the damping capacity of the material.
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These include, but are not Timited to: 1) internal friction or
hysteresis within each of the constituent materials, 2) interfacial
sTip at the fiber-matrix interfaces, and 3) fiber orientation and
Tength. Hence damping cannot be estimated easily, but instead must be
measured.

The influences of common environmental factors such as moisture
and temperature have been found significantly to degrade the matrix
dominated mechanical properties of many polymer composites. When
moisture is absorbed, the composite gets heavier and the resin matrix
expands. Matrix swelling and rapid heating may eventually lead to
surface cracking. The amount and type of degradation that this can
cause in the mechanical p;opérties of the composite depend on matrix
material, fiber content and orientation, cure quality, service
temperature, humidity, ¢uration of exposure and geometry of the
component. Hence, it is extremely difficult to make theoretical
predictions regarding the effects of the above environmenta! factors
on the mechanical properties, particu]a%]y the damping capacity of
composite materials.

Joints are used in deployable structures as well as in structures
which must be assembled in space. Unlike metals, fiber composites
cannot be welded together. The alternatives include the use of
mechanical fasteners, such as bolts and rivets, or adhesive bonding.
These techniques produce joints with vastly different properties.
Adhesive bonding is preferred over conventional fastening techniques
due to a greater uniformity in load distribution, elimination of drill

holes, reduced weight and increased processing ease.



e,

¢

4

It is belfeved that bonded (and bolted) joints act to enhance the
damping capacity of the structure. The energy dissipation in a joint,
however, is a complicated process involving several mechanisms. The
characterization of a joint presents many experimental and analytical
challenges. Because of the complexity of the problem it appears that
very little work is being done in evaluating the damping in joints and
built-up structures. Hence there is a considerable need for the
contribution of knowledge in the understanding of the damping capacity

of joints.

Scope of the Study

The Hubble Space Telescope, which will be placed in orbit by NASA

in 1989, is a new telescope which will be able to peer far out in

space and back into time, pfoducing images of unprecedented clarity of

galaxiés, planets and stars billions of 1ight years away from the
'earth. The Space Telescope requires precise pointing accufgcy and its
optical system is held together by a truss made of graphite epoxy
composite materjal. Graphite epoxy is a strong, lightweight composite
material, developed by NASA in the early 1970s, that expands and
contracts very little in response to temperature changes. The
metering truss is 5.3 m Tong and 2.9 m in diameter and has a mass of
only 114 kg[1]. '

The pointing control system of the telescope consists mainly of
optical sensors, a digital computer, gyros and four massive reaction
wheels. Pointing torques are applied with the reaction wheel

assemblies. The reaction wheels produce vibration disturbances when
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they are rotated due to imbalance of the rotor and imperfections in
the spin bearings. The vibration disturbances could excite the system
resonances which would lead to significant truss system displacement
amplitudes. These would result in the blurring of the optical system
image of the space telescope. Vibration suppression of the truss
system is provided by passive jsolation systems in the form of viscous
dashpots[2]. A specific knowledge of the material and system damping
of the truss system is mandatory in the design of the passive
isolation systems. Hence one of the main objectives of the present
research was to evaluate systematically, the damping capacity of the
graphite epoxy material of the telescope truss system. Furthermore,
since the telescope will operate in space, it is necessary to
determine the damping capacity of these materials in a simulated space
environment.

When graphite epoxy materials are used in a vacuum en;Hronment,
they have a tendency to outgas. During outgassing they release all
the gases and moisture which were trapped during manufacture. There
is some concern, however, that mechanical properties including its
material damping may change after the material has outgassed for long
periods of time. For graphite epoxy materials, this outgassing can
take a period of about six months but this period may be reduced to
about 3-4 weeks by heating the material to about 100°C in a vacuum
chamber.

The telescope is expected to experience variations in temperature
of as much as 140°C in space[3]. As mentioned previously, the damping

capacity of graphite epoxy materials is considerably influenced by



¢

P—

the variation in temperature. Though it is known that temperature
affects the damping capacity of these materials, not much wark has
been done on the behavior of these materials in cryogenic
temperatures. Such temperatures may be important during launching and
deployment in space.

The truss system of the telescope is a joint-dominated structure.
As discussed earlier, the damping provided by joints is a potential
source of passive damping which is useful for the suppression of
vibration in the truss system. It is not known, however, whether the
bonded joints in the truss will significantly increase the damping
over the material damping. Analytical and experimental work on the
evaluation of system damping of basic structural joints is a good
starting point for research in this area. The data derived from
simple structures will provide some necessary information which can be
used to gain an understanding of the dynamic behavior of complex

structures such as the truss system of the telescope. .

~
-

The other objectives of the present study include, i) a study of
the effects of outgassing (moisture desorption), and temperature (both
high and low) on the damping capacity of the qraphite epoxy composite
material of the truss system, and b) an analytical and experimental
evaluation of the damping capacity of simple adhesively bonded

structural joints.

Report Qutline

This report contains the results of the present

jnvestigation into the above-mentioned objectives. The project work
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was performed in the Sound and Vibration Laboratory of the Mechanical
Engineering Department at Auburn University. The report is divided
into seven major chapters. A general overview of damping— its
characterization, and some mathematical models is presented in chapter
2. The various experimental and estimation techniques for the
evaluation of damping are included in the same chapter. The advantages
and disadvantages of each method are discussed. An improved forced
vibration method developed during the course of the project is
explained.

Chapter 3 covers the previous pertinent work on the evaluation of
damping of composite materials. Work on the effects of moisture
absorption and desorption, and temperature on the dynamic broperties
of composites is also reviewed. Recent developments in the s£udy of
dynamics of structural joints is also discussed.

Chapter 4 deals with the measurement of the damping of graphite
epoxy material. It details the methodology and results of the damping
measurements made on graphite epoxy tube and beam specim,ens under
normal atmospheric conditions and in a vacuum. Experimental findings
regarding the influence of moisture desorption and temperature (both
high and low) on the damping capacity of the material are also
discussed. ‘

Chapter 5 is devoted to the study of damping of bonded structural
joints. An analytical model has been developed to predict the natural
frequencies, loss factors, and mode shapes of a bonded lap joint for
free flexural vibration. The mathematical details, solution scheme,

and numerical results are presented. Numerical results are compared
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with the experimental results obtained on graphite epoxy lap-Jointed
specimens. ~Some experimental results on the damping of
graphite epoxy double-butt-jointed specimens are described in the same
chapter. A summary of the'project results, conclusions drawn, and some

recommendations for future work are presented in chapters 6, 7 and 8.
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II1. DAMPING OVERVIEW

The term damping refers to any form of energy dissipation from a
vibrating system. There are two main kinds of damping: 1) material
damping and 2) system or structural damping. Material damping is the
damping inherent in the material and is caused by a variety of
physical mechanisms which depend on the material. System damping is
due to energy dissipation in the total'structure, j.e. in addition to
the damping present in the material, it includes several non-material

damping mechanisms such as, energy dissipation effects at joints,

-fasteners, and interfaces, acoustic radiation damping, and coulomb or

dry friction damping, etc. A knowledge of the damping property of a
structure is of primary importance in controlling its resonant
response, and thus in prolonging its service life. Damping-also plays
a crucial role in the proper design of the system for Yibratory

lToadings.

Characterization of Damping

A number of different units and notations have been proposed to
express the damping parameter. The variety of combinations of energy
dissipation mechanisms, the wide range of materials and testing
techniques, the effects of Joints and interfaces, and various
different motivations for damping studies have led to different

viewpoints towards damping and different mathematical models for its
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characterization[4-10]. Many different disciplines have been
concerned with the damping research and each discipline, it appears,
has its own favorite nomenclature. It is therefore essential to
review at least some of the important damping representations in

current use and to indicate the relationships between them.

Absolute Energy Units
In terms of the absolute energy units, which are applicable to
both linear and non-linear materials, the damping energy dissipated in

the specimen in a cycle per unit volume (Udv) is & measure of the
material damping. Thus the total damping energy UD' is

Uy = Iy UdVdV' (2.1)
where V is the volume. The usual unit of UD is joule/cycle and of

UdV' joule/cm® -cycle.

The absolute energy dissipation is difficult to measure, in
practice, in most cases. Hence relative energy units are more

popular.

Relative Energy Units
Relative Energy Units, also applicable to both linear and non-
1inear materials are dimensionless ratios of damping energy to strain‘
energy. Four different forms of relative units appear in the
literature:

1) The loss factor n is defined as the ratio of energy dissipated in

a cycle to the maximum energy stored during that cycle. For a simple
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harmonic excitation, f(t) = F sin wt, the response can be described as
x(t) = X sin (wt + ¢), where ¢ is the phase angle between the force
and the displacement. The energy dissipated D is equal to the work

done in that cycle:

D - {)2”/“’ £(t) (L) 4t (2.2)
=1 X F sing.

The strain energy U in the system is nothing but the energy supplied
to the system, which is given by,

U=z {)Tf(t) x(t) = FXcosg . (2.3)

Therefore, from Equations (2.2) and (2.3), the loss factor is given by

D
n= -Z_Hﬁ = tan¢. (2.4)

Z) The quality factor Q which is defined as the reciprocal of thg

loss factor 5 is also sometimes used as a measure of damping,

=1
Q 7 ) (2.5)

3) A most popular representation of damping is the Damping Ratio (¢).

It is the dimensionless ratio associated with a resonance frequency

(modal frequency) and is defined by
C
c= =, (2.6)
e )
where ¢ is the viscous damping coefficient and . is the critical

damping coefficient, for which the system will cease to oscillate when

displaced from rest and released. The damping ratio ¢, often
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expressed as a percentage gives a quick visualization of the damping
present in the system. Values of ¢ {1 suggest that it is an
underdamped system, ¢ = 1 represents 2 critically damped system,
and ¢ > 1 represents an over-damped system. Throughout this report,
the percent critical damping ratio ¢ is adapted as the measure of
damping.

4) Complex Modulus_approach - In many polymer and composite

materials, the Young's modulus (E) can be treated as a complex
quantity, since there will be a phase difference between the stress
and strain[10]. In this approach, we define the following relationship

hetween stress ¢ and strain €:

Q

o = Ee + af 25, (2.7)

[o})
ot

where E is the Young's modulus and a s a constant. Assuming a time

iwt jwt F

dependance of the form, e =", we can write, 0 =0, ¢, and
_ jwt . p
€ =€ e . Then Equation (2.7) becomes -
o, = E (1 + iwa) €. (2.73)

In Equation (2.73), the term E (1 + jwa) can be treated as a complex
modulus of the material, which is written in a more convenient
form, "~

E'= E' + 1 E", (2.7b)
where E' = E, the real part is called the 'storage modulus', and E" =

waE, the imaginary part is called the "Toss modulus'. The tangent of
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the phase angle between the stress and strain is defined as loss
tangent or loss factor.
N _ Ell

tang = 7 = g7 - (2.8)
A1l of the above relative energy unit representations of damping are,
however, related to one another by:

- _ 21

n = tang = 2¢ = q- (2.9)

It should be noted that Equation (2.9) is valid for the damping
measured at a resonance frequency and it is assumed that <1 (1ightly

damped systems).
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Experimental Methods for Damping Measurement

There are several methods available for measuring the material
damping or damping in general. The choice of the technique to be used
depends on several factors such as whether the material has a small or
Jarge value of modulus of elasticity, a small or large value of
damping, the frequency range of interest, temperature, stress state,
size and shape of the specimen, specimen configuration and excitation,
available instrumentation, etc. Comprehehsive reviews of the basic
experimental techniques, along with their relative merits and
demerits, have been published by Plunkett [11], Bert and Clary [12],
and Chu and Wang [13]. The different methods for the estimation of
the damping ratio can be broadly classified as: '

1) Time domain methods,
2) Frequency domain methods, and
3) Other special methods developed for testing viscoelastic

materials.

Time Domain Methods
As the name implies, the system response data in the time domain
are utilized in these methods for the estimation of the modal damping
ratio. There afe two such methods: a) Logarithmic decrement method,
and b) Impulse response method. These are described in the following

sections.
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Logarithmic Decrement Method

This is also called the free-vibration decay method. This is one
of the oldest techniques used for the estimation of the damping ratio.
In this method, the free vibration decay (displacement amplitude
history) of a system to a transient input (an impulse) is measured by
a transducer and recorded by a recorder. From this decay curve, the
logarithmic decrement &, which is related to the damping ratio of the
system is calculated. The theory behind this simple method is briefly
outlined here. For a single degree of freedom system (Figure 1 (a))
the time response of the system due to a transient input can be

expressed as
y(t) = A e~S¥pt sin(ugt + $), ‘ - (2.10)

where, A is a constant defined by the initial conditions, ¢ = damping

ratio, w, = undamped natural frequency, wy = damped natural frequency,

¢ = phase angle, and t = time. Equation (2.10) represents a decaying

sinusoidal motion (Figure 1 (b)) and provided ¢ is small, w '® w/ and
if the sine term in Equation (2.10) is unity at some timé to' then it
will again be unity at times, ty = t, * ZxN/wd Nty + ZnN/wn, where N

is an integer number, N = 1,2,3 .... Thus, by examining Equation

(2.10), we see that,

Y(to)= N(@21g)

m) (2.11)

By taking natural logarithms, we cbtain the logarithmic decrement §

as:
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Figure 1. Illustration of the Logarithmic Decrement Method
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Use of Equation (2.12) provides a convenient way of measuring the
damping ratio ¢. In this method, the specimen is clamped in a
cantilever position, then "plucked" and allowed to vibrate freely.
The decaying motion may be measured by strain gauges, accelerometers
or optical sensors. Crawley and his co-workers [14,15] have utilized
strain gages to test their specimen in free-fall in a simulated space
environment. This was done to avoid the extraneous energy losses due
to supports and acoustic radiation.

If the system has many resonances, this approach can still be
‘used. One way is to use a band-pass filter to filter out the
undesired frequency content of the signal prior to displaying the
signal in the time domain on the recording systeni.' An alternative
method 1s to ‘tune' the desired mode of vibration by attaching several
shakers to the system and by using force appropriation—"cechniques
described by Asher [16]. When the system is vibrating in a desired
mode, the shakers are simultaneously cut-off, and the resulting decay
for that mode is measured and the damping ratio is calculated by using
Equation (2.12). This approach, however, requires elaborate
-instrumentation and hence has been used only for testing large
ajrcraft structures. ‘

In the logarithmic decrement method, it is assumed that the
damping ratio is independent of the displacement amplitude. A

modification of the decay method can be used very easily by passing
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the time response through a log amplifier. The decay curve will then
be a straight line and the slope of this line is a measure of the
damping [Figure 1(c)]. An alternative approach is to use a least-
squares curve-fitting procedure for the measured decay curve to obtain
an accurate estimate of the damping ratio. The theory behind this
curve-fitting method is given in [17]. A computer simulation was
carried out in reference [17] in order to compare the decay method
with the least squares curve-fitting method for the estimation of the
damping ratio. It was shown that the curve-fitting method is more
accurate than the decay method for the conditions most frequently
encountered in practice. The optimum number of data points for which
the best estimate of the damping ratio is obtained was found to be
about twenty.

Some other methods of measurement associated with the decay of
free vibration of mechanical systems have been noted in the
1iterafure[4,18]. One such approach is the use of the time:averaged,
squared response y?, in decibels. If we define the dispTaceﬁent level

L. to be:
y o be

Ly = 10 1oglo(y2/y2ref), ds (2.13)

where, y is the displacement amplitude and Yyef is a reference

displacement amplitude, then it is easy to show, by substituting for y
from Equation (2.10), that,

-dL, '-d

—L = ¢ [20 Logy (Ae™$nt/y . )1, (2.14)
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and the Decay rate At is given by:

-dL
b, =~ = - [20 Logyg(e)] [~gw] = 8.69gw, - (2.15)

Another way of estimating the damping ratio of a system 1Is to
measure the reverberation time of the vibration decay in the system.

The reverberation time TR is defined as the time in which the

displacement level is reduced by 60 dB. It is seen from Equation

(2.15) that this value is given by:

T, = 6.90/¢u = 1.10/¢F . (2.16)

(This is easily shown by letting dt TR and dLy = -60 dB, and v, =

2nfn in Equation (2.15).)

Impulse Response Method

This method is essentially a forced vibration method. With the
advent of modern digifaT FFT analyzers, it is now possible to obtain
the frequency response of a system to any physically realizable
excitation, and the data can be processed either in the time aomain or
in the frequency domain within a fraction of a second. The frequency
response H(w) of a system is the ratio of system response to an input
excitation in the frequency domain. The impulse response h(t) is the
time domain equivalent of the frequency response. It can be obtained
very easily by an inverse Fourier transformation of the frequency
response function (FRF).

A typical experimental set-up for measuring the impulse response

function is shown in Figure 2. For a single degree of freedom system,
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the unit impulse response (1.e. the system's response to a unit force)
is identical to that of Equation (2.10) and it can be easily
recognized that the exponential decay is also a straight 1ine when the
displacement amplitude is plotted on a logarithmic scale. Hence, the
techniques described in the previous section can be used to estimate
the damping ratio. The decay rate method discussed previously is most
commonly used in conjuncfﬁon with the impulse response method.

For a multi-degree of freedom system, the impulse resﬁonse

function is more complicated. It can be written in terms of the modal

parameters as [19,20]:

0 ¢t
h(t) = § IR;1e™$i¥1" sin(ust + a) (2.17)
1

where, n = number of modes
R.= residue,
a.= angle of residue, -
= modal damping ratio, and
w.= modal frequency.
The subscript i stands for the ith mode of vibration. The residue Ri

is related to the mode shape of the ith mode. Brown et al. [20] have
described a curve-fitting technique called the complex-exponential
algorithm, to extract the modal damping ratios and other modal
parameters from the measured impulse response data using Equation
(2.17). This technique has the disadvantage that it requires very

elaborate data reduction equipment and generally gives an



21

LR

motion
transduces

structure or specimen

<

force transduCec
In hammar Lip

hammet

L — CRT .
L] dispiay
(SR
transfer
FFT function

Analyzes

Figure 2. A Typical Experimental Set-up for the Measurement
of Impulse Response -Function



¢

¢

22

overestimation of the damping values because of the damping induced by
the exponential window in the FFT analyzer. This method is, however,
the only powerful technique available for measuring the damping ratio
of systems with very high modal density and modal interference. Many
commercial modal analysis software packages have incorporated this

technique as one of the standard curve-fitting routines for extracting

the modal parameters.

Frequency Domain Methods

Several techniques are avajlable fof estimating the damping from
the system response data in the frequency domain. Usually, in all
these methods, a simple single degree of freedom system model with
either a viscous or a hysteretic type of damping is assumed. A
detai]ed description of viscous and hysteretic damping models can be
found in [10]. The following is a broad classification of the
frequency domain techniques for the estimation of the dampiﬁg ratio:
1) Resonant forced vibration methods, .
2) Non-resonant forced vibration methods and,

3) Input-power method.

Resonant Forced Vibration Methods

As in the time domain methods, the damping ratio is assumed to be
independent of the displacement amplitude, but dependent on the

resonance frequency of vibration.
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1f the damped simple system in Figure 1 (a) is excited by a
simple harmonic force of amplitude | F | at angular frequency w = 2rf,

the frequency response function is given by[18]:

Y{w) . 1 _ 1/K
F{E% T K Mw?) + fcw — (1-12) + T(2cr) (2.18)

Here r = w/wn is the frequency ratio, and 1 = (—1)1/2. The ratio Y/F

is called the frequency response function (FRF) which in this case 1is
the receptance or the displacement admittance function. In practice,
transient, random, and sinusoidal excitations can all be used to
obtain the FRF function. When random excitation is used, the FRF is
estimated by power spectrum averaging. In this case the FRF is
defined as the ratio of the cross-spectrum between the fdrce and the
displacement signals to the auto-spectrum of the force signal. The
random excitation technique is normaily used to obtain more accurate
results than the other excitation methods if nbise is present in the
measurement process. A survey of the different excitation techniques,
their relative merits and demerits for modal analysis of s%ructures
can be found in references [21,22].

Equation (2.18) forms the basis for many of the damping

estimation methods as follows:

(a) Half-power Points Method

The magnitude of the receptance function of Equation (2.18) can

be expressed as:

1/K .
) ((1'r2§’ +)(2§r)2) fa - (2.19)

-l =<

Imag
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Provided the damping is small, ¢2<<1, which is the situation in most
engineering applications, then, when the forcing frequency w equals

the undamped natural frequency W the displacement admittance is

nearly maximum. The dynamic magnification factor, DMF = | Y [ / | F |

/ X for this situation when w = v, (resonance) is thus, DMF = 1/2¢ = Q

(where Q is the quality factor).

Defining the half-power points as the points at which

| Y| /| F | /Khas fallen to vZ of its value at resonance (see

Figure 3(a), we obtain the two values of angular frequency Wy and w,

for this to occur from

- —— o (2.20)
2¢ v2  {(1-r2)2 + (2¢r)2} 2

énd assuming ¢2<<1, we obtain from the quadratic solution:

rl 7 = wl 1 = 1 =+ S-. (2‘21)

' -
Nn h

Thus, the damping ratio ¢ can be obtained from the half power

bandwidth Aw = w,-w, as

Wy =Wy
¢ = 2 (2.22)

Thus, by determining the two frequencies w, and w,, at which the
response is 1/v2 of the value at the resonance frequency o the

damping ratio ¢ can quickly be determined using Equation (2.22). The

amplitude ratio of 1/v2 corresponds to reduction of amplitude measured
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in decibels of 20 Log10(1/¢2) = -3 dB. Thus a measurement associated

with an amplitude ratio of 1/v2 is frequently referred to a "3 dB'
bandwidth.* If the system has many higher resonance frequencies, then
the same procedure can still be used by measuring the half-power
bandwidth of each resonance peak in the curve. This approach can be
used provided that ¢ is not too large and that the resonance peaks are

fairly sharp and can be separated in the frequency domain.

(b) Damping from Real and Imaginary Parts of Receptance (co-quad
plots)
The real and imaginary parts of Equation (2.19) shown in Figure 3

(c) and 3 (d) are

Re( 1) = 11_—19;212 ggr)“ , and (2.23)
n (F) = [ s . e

The real part will be zero at a resonance (when r = 1). The damping

5

ratio can be estimated from the relation:
wi- wi

where w, and w, are the frequencies on each side of w, where the

magnitude of the real part reaches a maximum.
From the imaginary plot, the resonance is located at the point
where Im(Y/F) has a peak. The half-power points correspond to

frequencies at which the quadrature response (imaginary part) has half
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of the maximum amplitudes. Thus Equation (2.22) can once again be used

for calculating the damping ratio.

(c) Damping Estimation from the Phase Angle Plot
Estimation of the damping ratio from the phase angle plot is well
described by Pendered and Bishop [23]. The equation for calculating

the phase angle is,
-2
tan¢ = l_rg ) . (2.26)

A typical variation of the phase angle with frequency is shown in

Figure 3 (b). At a resonance, theoretically, the phase angle between
force and displacement should be -90°. The half-power points, A and B

correspond to phase angles of -45° and -135° respectively, thus, the
qamping ratio can be evaluated using Equation (2.22). In practice,
since it is often very difficult to measure the half power points from
the phase angle curve, an alternate approach has been sugge;ted. This
involves a measure of the slope of the tangent to the curve at the
inflection point, d2¢/8w? = 0. The damping ratio can then be
calculated from the relation:

1

1
wn(s19pe at wn) N wn( gg )u » (2.27)

n

Although the phase method has an advantage in the sense that, the
determination of the natural frequency does not depend on the accurate
location of a ‘'peak’', it has not, however, been very popular, since,
even now in practice, it is very difficult accurately to measure the

phase angles.
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(d) Vector Diagram Method (Kennedy-Pancu Method)

This method was originally developed by Kennedy and Pancu [24].
If the complex receptance function of Equation (2.18) 1is plotted on an
Argand plane, which is a plot of real part vs. imaginary part on a x-y
coordinate system, the resulting curve would be a circle as shown in
Figure 4. In fact, this can be proved very easily by considering
Equations (2.23) and (2.24). By a simple mathematical manipulation,
it can be shown that

{Re(Y/F)}2 + {Im(Y/F) + 1/(4¢r)}? = 1/(4¢m)? (2.28)

which represents a circle with center at (0, 1/(2¢r)), and having a
radius of 1/(2¢r). From the plot, Kennedy and Pancu noted that: 1) at

resonance, the displacement vector lies on the imaginary axis and

“hence, is 90 degrees out - of phase with the applied force, 2) the

change in arc length(s) along the curve per unit change in frequency
‘(ds/dw) is a maximum at resonance, and 3) the diameter of -the circle

is inversely proportional to the damping ratio.

-
-

As in the phase angle method, here also two approaches are used
to estimate the'damping ratio. One approach, of course, is to use the
half-power point Equation (2.22). The half-power point frequencies
can be determined readily from the Argand Plot by drawing a line
parallel to the real axis through the center of the circle; the points
of intersection of this 1ine with the circle are the half power point

frequencies. These points also correspond to frequencies w,, and w, at

+90° angle with respect to the damped natural frequency. The

resonance frequency is the point on the circle farthest from the real
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axls (where the imaginary part is zero). An alternate approach to
determine the resonance frequency is from arc Tength measurements; the
resonance frequency corresponds to a point of maximum rate of change
of arc length with frequency. A mathematical analysis for this is
presented in many references [25-28]. Alternatively, the damping
ratio, can be estimated by knowing the rate of change of phase with
frequency, evaluated at resonance (see Equation 2.27).

In applying the Kennedy-Pancu method, the normal procedure is to
fit the 'best circle' through the measured data points around a
resonance. This is called the 'circle fit' procedure. For a multi-
degree of freedom system, the complex receptance can be viewed as a
summation of the complex receptances of several single degree of
freedom systems as in Equation (2.18). A typical Kennedy-Pancu plot
for a two-degree of freedom system is shown in Figure 4 (b). It is
evident that there are two resonance frequencies because of the
presence of two circular arcs. The normal procedure for such systems
is to fit a circle to each of the loops separately as a single degree
of freedom system. Notice that the vector diagram of systems with
many degrees of freedom are not circles, but curves with many loops,
usually one for each resonance. Woodcock [29] has extended the
Kennedy-Pancu method to study systems with many degrees of freedom.
It is reported in the literature that the circle-fitting procedure
yields better estimates of modal parameters than the other methods in
the presence of closely spaced modes. But, the choice of data points

utilized in the circle fit gives different answers and the best answer

becomes a matter of judgement [20].
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The principal assumptions made in all the methods discussed so
far for the estimation of the damping ratio are: 1) the system is
Tinear, 2) the system possesses very 1ight damping, and 3) the modes
of the system are well separated. Each method has its own advantages
and disadvantages. In general, most of the above methods have a major
drawback in that they just use two or three points on the response
curve for the estimation of the damping ratio. Hence, the accuracy of
the estimated damping ratio depends on how well the two or three data
points are chosen. In practice, it is usually difficult accurately to
locate the resonance frequency and the half-power points.
Furthermore, the frequency resolution of the analyzing instrument has
a restriction on the value of the damping ratio that can be'estimated.
Hence, recognizing the need for a better method for dampiné ratio
estimation, the following improved forced vibration method has been

developed as a part 'of this research project. p

Improved Resonant Forced-Vibration Method .

The method consists of fitting a 'best curve' for the measured
receptance data using an iterative leaét-squares error criterion. The
damping ratio and the undamped natural frequency are then, computed
from the coefficients of the rational fraction polynomial determined
from the curve-fitting technique. Any of the three functions of the
receptance namely, the magnitude, the real part, or the imaginary part

can be used in the method. The theory behind this method is as

follows.
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The frequency response function used in the analysis is the
receptance function (displacement/force) of a single degree of freedom
system, obtained from a single point excitation. Either a random
input excitation (white ngise) or a swept sine excitation can be used.
The receptance function can easily be measured in practice by an
impedance head and a dual channel signal analyzer. In the following
analysis, the equations of motion of a multi degree of freedom system
with proportional damping are used. These are chosen to illustrate the
fact that the method developed here can also be used for a system
response containing several distinct modes by fitting each of the
modes separately as a single degree of freedom system.

For a general multi-degree of freedom system with pfopqrtiona1

damping the equation of motion in matrix form is:

Mx + Rx + Kx = P(t) , (2.29)
where, M = mass matrix, nxn, i

R = damping matrix, nxn, P

K = stiffness matrix, nxn,

X , &%, x = acceleration, velocity and displacement vector,
respectively, nxl,

P(t) = force vector, nxl,

n = number of degrees of freedom.

If the normal mode shape of the system without damping 1is [¢]nxn' then
applying the following transforms:

x = [¢]q, % = [¢]4, and x = [¢]q

and the orthogonality conditions:
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1
=

[61, ™M1 = 0, g1 Mlg);

0, [¢]1TK[¢]1 = KG'

1

T
[41,TKL¢14
where M. and KG represent the decoupled (diagonal) mass and stiffness

matrices of the system respectively. Pre-multiplying both sides of

Equation (2.29) with [¢]T and applying the above transforms the
following equation is obtained:

[1MEp1d + [1TRIP1E + [17KIp1a = [417P(1) . (2.30)
Assuming that the damping is viscous, and that the damping matrix fis

proportional to mass matrix, rr =2§rwner' a diagonal matrjx equation

_from Equation (2.30) is obtained:

Med + MG[\Zgrwnr\]q + Kgq = Pe(t) (2.31)

fwt

where, PG(t) = [¢]TP(t). If PG(t)= Pge , then the steady state

solution of Equation (2.31) can be obtained as:

q = Qeiwt

PGr

+ 120 - wz]' r

2

=1, 2, ... n.
Gr[wnr '

where, Qr =M

Since x = [¢lq = qoewt

oo {80 {7} {¢)

) 2 5T - . (2.32)
r=1 Mg, [uppt 120050 - w ]

9%
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If only one force acts on the j-th point and the response is measured
at the same point, then the r-order driving point disp]acement'-

admittance is obtained as follows:

2
M. = Pr (2.33)
or = 2 . 2 . .
Mepluppt 1200 - “‘]

The magnitude, the real part and the imaginary part of the receptance

for the r-th mode are, respectively,

2 4

2 ¢r /(2”)
M, )5 = , (2.34)

D* MGr[fgr + 2(§2 - 1)f§rf2 + f4]
2 ;2 2 2

e ).= . ¢r (fnr' < )/(2r) (2.35)

Orl " [+ 22 - DAL+ £

2 2
-2 f f/(2

Im(M Pr < T i (2.36)

) =
D M. b 7 ) .t
r ar[fy .+ 2(2¢" - Df . 7+ 7]

where, fnr is the excitation frequency, Hz. Equations (2.34) through

(2.36) can be expressed by rational functions:

A3
» ,
Mot © = [A, + A2f2 £ (2.37)
A4(A1)1/2-A4f2 :
A1 + A2f + f .
) Asf '
Im(M,.) = . (2.39)
Dr A+ AT+ £
1 2
4 _ 2.y ¢2 2 4
where, A1 = fnr ' AZ' 2 (2¢°-1) fnr : A3‘ ¢r / MGr(Zﬂ) ' (2.40)
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2 2 2 2
Ay = $5/ Mg (2m)%, and Ag = gy 2cF, /Mg (2m)°.

From the coefficients A1 and AZ' the natural frequency and the damping

1

ratio can be obtained:

fo=A

1/4
L= AL (2.41)

A
[—25 + 1]}1/? ) (2.42)

2
an

{

Ll
1l

1
2

Using the measured data for the magnitude or the real part or the
{maginary part of the receptance and the frequencies in the range of
the bandwidth of the half-power points, these data can be fitted to
the corresponding equations given above. Using the magnitude with

Equation (2.37) for example, the curve-fitting procedure is as

follows:

Let y = |M03(f)|, then the estimate of ; is:

~ B,
y = > 4 ! - (2.43)
1 + Bzf + B3
Az A 1
where, B; = = , B, = -+ and By = .- Equation (2.43) can be

1 1 1

”~

written as, By - Y (1+ 82f2 + By f4) = 0 . The residual r is:
ey -y =By - V(8P + ByF) -y (2.44)
Y = r+y. For each experimental point, corresponding to a Yi - fi
pair, the residual is

r: =B

2 4
i 1 Y, (B, fy + Byfy ) - Y5 (2.45)
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The least-squares curve-fitting criterion requires that the sum S of
the squares of residuals for N points be a minimum, that is

N, N 2 4 2
S =1[1r] =[1[Bl-yi (Bzf] + B3f.‘ ) = yi] = min. (2.46)
= 1=

Setting the partial derivatives of Equation (2.46) with respect to the

coefficient Bl' B2 and 83 to be zero, the matrix equation is obtained:

pn — - — p— e

2 4
2 2 4 2 (6 _ 2
4 2 .6 2 .8 4

Equation (2.47) can be solved for the constants, Bys B2 and B3 by an

fterative method. For the first iteration, it is assumed thaf

Yi=yi,then, Yi(L) =yt ri(L-l), where L is the iteration time. Then

the calculations are repeated till the desired convergence Criterion
is obtained. After at most 10 iterations, the coefficients will

converge to an accuracy of about 10"6. Then the undamped natural

frequency and the damping ratio can then be obtained from Equations
(2.41) and (2.42) respectively. A computer program has been written
to carfy out the iteration using all the three functions, namely the
magnitude, the real part and the imaginary part of the receptance
data.

The residual for Equation (2.43) «can be defined in an

alternative form:
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_ 2 4y _
ry =Yy (A1 + A?_f + f7) A (2.48)

then the matrix equation for the least squares curve-fitting will be
simpler than Equation (2.47) and this procedure does not require any
jteration for its solution. Hence this is even a simpler method than
the iterative least square method suggested above. Similar expressions
can be developed using the real and imaginary parts of the receptance.

The major advantage of this method is that, the entire data near
a resonance are used for the estimation of the damping ratio, as
opposed to three points in the half-power points method. Thus, a more
accurate estimate of the damping ratio can be obtained. Furthermore,
the undamped natural frequency obtained from the least-squares
computation is used in the calculation of the damping ratio. Also,
this method is not limited to systems with small damping and the
frequency resolution of the analyzer does not influence the accuracy
of the method to some extent. Since this method uses fewer—data near
a resonance as compared to other complex curve-fitting techniques
[30,31] a smaller memory is required in the computer and a higher
data-reduction speed can be achieved. This method has been u;ed in
the present investigation for the measurement of the damping ratio of
the graphite epogy composite material. Details of its application to
the present project are discussed in the foerthcoming chapters. Some
results showing the comparison between the curve-fitting technique and

the half-power points method is included in Appendix A.
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Non-Resonant Forced Vibration Methods

This method has been mostly applied in the measurement of the
complex Young's modulus of polymers and viscoelastic materials. The
loss factor (2¢) is calculated from the real and imaginary part of the
modulus by use of the equation g = E"/E', where E' and E" are the real
and imaginary parts of the complex dynamic modulus respectively. The
method c;n be best illustrated by considering the equation of motion
for a single degree of freedom system using the complex modulus
approach. For many composite materials, thé force and displacement

cycles will be out-of-phase by ¢, so if F0 and y, are the force and
displacement amplitudes respectively, then
MY+ (K +iK) y = F, ol (ut +9) (2.49)

where w is the angular frequency.

Let y = Yo eiwt, then Equation (2.49) can be written as: -
-Mw? + K' = (Fo/yo) cos¢, and ~ (2.50)
K" = (Fo/yo) sing . (2.51)

For a very small sample, operating at low frequencies (stiffness-
controlled region), the inertia term of Equation(2.50) is usually
neglected. Further, the stiffness K of the beam specimen is related
to the modulus E in the form K = EA/t, where, A is the area of c}oss
section and t the thickness of the sample. Hence, from Equations
(2.50) and (2.51), the damping ratio can be evaluated as:

¢ = K'/K' = 1/2 tang. (2.52)



¢

39

Hence the forced non-resonance method relies on the measurement of the
phase angle between the force and displacement signals at a particular'
frequency w, thus, it can be used as an indirect method for obtaining
the damping as a function of frequency. This method, however, has a
major drawback in that it can be used only on very small specimens and
in the low frequency region, since the effect of inertia is neglected
in the method. This method has been adapted for the measurement of
the complex modulus of polymers and composites in many commercialiy
available instruments like the DMTA (Dynamic Mecharical Thermal
Analyzer) [32,33].

In a typical DMTA test arrangement, the displacement is applied
via a loading stage attached to the table of an e]ectromégnetic
vibrator. The displacement is measured usually by a non-contacting
magnetic transducer. The force is measured by a force transducer
attached behind the specimen. The specimen is mounted horizontally
within a controlled temperature enclosure in a single can;i]ever or
dual-cantilever. A typical sample used in this arrangement is about 1
mm thick, 6 mm wide, and 28 mm long, and the frequency of excitation
is limited to below 90 Hz.

The advantage of this method lies in its ability to study the
dependence of the dynamic properties upon frequency, strain amplitude
and temperature. Materials with a modulus greater than 10 GN/m? cannot
easily be tested by this method. For the measurement of the damping
the phase angle must be measured accurately. For phase angles less

than 1 degree it is not possible to measure them very accurately. But
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1érger values of phase angles can be measured accurately. The method
therefore 1s not good for measuring small values of damping, but 1is
ideally suited for measuring Targe damping values.

The hysteresis loop approach is another widely used non-resonance

forced vibration method. Its theoretical basis is explained in detail
by Lazan [2]. This method enables the measurement of very low
material damping particularly in metals. It is limited, however, to
the very low loading frequencies that are usually achievable in

material testing machines.

Input Power Method

The theory for this method is developed from a consideration of
the energy balance in the structure. If a- damped mass-spring single
degree-of-freedom system (Figure 1 (a) ), is excited by a force F at a

sinusoidal frequency w, then the dissipated power Hdiss is

proportional to the product of damping force Fd and ve]ocit&:

-
s

2
Hdiss[cyc]e = [ Fqdv=7] Fq v dt = mcwv (2.53)

where o is the velocity amplitude, and c is the viscous damping

coefficient.

In steady state conditions, the power supplied Hin from a shaker
must be equal to the power dissipated. Thus if Hin can be measured
and I, = Myseq is assumed, then ¢ can easily be calculated from

Fquation (2.53). The input power can easily be measured using an
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impedance head. If a simple harmonic force of angular frequency w and

amplitude FO is applied, then the time-averaged input power is

Hin = voF0 cosf, (2.54)

where g is the phase angle between the force and velocity. Fahy [34]
has discussed the case of input power measurement for random
excitation. Nakayama and Crocker [35] have made extensive
measurements of power supplied to structures and determined the
structural damping from such measurements. According to Nakayama and
Crocker, the input power for a random excitation with a time delay
between the force and acceleration signals is given by:

fk + Af/2

, N/2
" fl (Ca(Dsintgy + Qg (F)cobpy) - 20 [ fmrg 11(2:59

]

where, Af = frequency resolution of the analyzer,

N = number of data points in the time domain (Block size).

CFa(fk) and QFa(fk) are the real and imaginary parts of the cross
spectrum between force and acceleration respectively at frequency fk.
A¢k= phase lag between acceleration and force signals. The band-

Timited input power can be obtained from Equation (2.55) by a simple

averaging procedure. Structures such as panels have many resonance

frequencies, and the normal procedure, then, is to measure the space-

averaged mean square velocity over the structure: <v2>s £ The

dissipative loss factor 5 = 2¢ is then obtained as [36]:

I,
_ mn
7’ - M2v2 Szﬂ-f ] (2.56)
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where M is the mass of the structure. The input power method has been
used mainly in conjunction with an approach called the Statistical
Energy Analysis of Structures (SEA)[36]. Cremer, Heckl and Ungar [37]
have developed an expression for the loss factor based on the modal
density (number of modes in a frequency band) for a broad band random
excitation. Clarkson and his co-workers [38-40] have used these
equations to obtain the modal densities and frequency-averaged loss
factors of plates and shells. The frequency-averaged loss factor
results they obtained compared well with the results from the
logarithmic decrement method. According to their experience, at least
five natural frequencies should be present within the analysis band
and the damping should be small for the results to hold good.

The input power method is only an approximate method capable of

yielding frequency-averaged loss factors.

Other Methods

Several other methods for measuring the damping ratio have been
developed specifically for viscoelastic materials. Some of the
technique - also called the Bruel & Kjaer cantilever beam method, was
developed by Oberst [41] and is the basis for the ASTM standard method
for measuring the material damping [42]. In the original Oberst
method, a cantilever metal beam (steel or aluminum) is coated on one
side with a layer of viscoelastic material whose damping is tc be
measured. The beam is excited by a sinusoidal signal with different

frequencies and the frequency response of the system is measured. The
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loss factor n and the Young's modulus of the material are then
extracted from lengthy equations given in [45]. Due to the high
thermal coefficient of expansion for most viscoelastic materials,
considerable thermal bending is induced on the coating side of the
Oberst bar. In order to cancel out the thermal bending, Nashif [43]
proposed to coat both sides of the beam. He derived separate
expressions for calculating the modulus and the loss factor, In this
method, the loss factor of the metal beam is assumed to be negligible.
Jones [44], further improved the testing apparatus with an approach
that allowed the test specimen to be heated to any temperature within
the limitation of the testing apparatus.

cannon, Nashif and Jones [45] have proposed another method for
measuring the damping ratio of very soft viscoelastic materials. 1In
this method, a cylindrical specimen of the material with a variable
mass on top is driven by a shaker. The loss factor can be calculated
by measuring the amplification factor, which 1is the ratio of the
resonant displacement response of the top mass to thé shak;r input.
Although, this method requires a éimp]e test setup, it is not very
accurate for materials with modulus greater than 7 MN/m?.

Ritcher [46], has proposed a rotating-beam deflection method for

measuring the damping ratio. In this method, a tubular shaft, made of
the material under investigation is mounted in a cantilever mode and
rotated about its axis in a horizontal plane. The horizontal and
vertical displacements of the free end of the shaft are measured

optically, and their ratio is related to the loss factor. The
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rotating-beam deflection method, however, has not been popular since
it requires very-high-precision optical instruments and is limited to
very low frequencies (0.001 to 20 Hz).

Damping has been estimated in the special case of a base-excited
system by measuring the ratio of tip to base displacement amplitudes
of a cantilever-beam specimen vibrating in its fundamental mode [47-
50]. Gibson and Yau [5&], have derived a more general expression for
calculating the damping in terms of the displacement amplitude at an
arbitrary point along a beam vibrating in any mode. In a previous
paper, Gibson and Plunkett [52], have measured the damping ratio of a
double-cantilever beam specimen from the energy balance method. Under
steady state conditions, the material damping is defined fn terms of
the ratio of input energy to the strain energy stored in the systems.
In their experiments the specimen was driven in its first or second
mode, and the resonance frequency, input acceleration and bending
strain (using a strain gage) were measured. The input energy and the
strain energy were calculated from the above-measured quan;1t1es and
the specimen geometry. The accuracy of the damping ratio obtained by
this method depends on the accuracy with which the bending strain is
measured.

A method utilizing the gravitational acceleration calied the

gravity method has been proposed by Sekiguchi and Asami [53] for

measuring large damping. The authors have used this method for
measuring the viscous damping coefficient of an 01l damper. Several

types of wave propagation methods have been reported in recent years
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in connection with the measurement of dynamic modulus of long and
slender composite specimens or structural elements [12,54]. The
dynamic properties of the test specimen are measured by observing the
changes that occur in certain characteristics of a stress wave during
its propagation through that medium. Both pulse and continuous waves
can be utilized. The main advantage of this method 1s its ability to
generate damping data that are independent of the damping of the
support system. The drawback, however, is that tests are confined to

Jong and slender rods subjected to high loading rates.

Summary

Among the various methods for measuring the damping ratio of
materials and structures described in this chapter, the logarithmic
decremént method and the half-power points method are simple, but not
very accurate. For obtaining more accurate results, either the
impulse response method or the improved resonant forced—vibration
technique should be used. The improved resonant forced vibration
technique consists of the estimation of the damping ratio from an
iterative least-squares curve-fitting procedure for the measured
frequency response data. The non-resonant forced vibration technique
is applicable only for testing very small samples in the low frequency
range. For studying the variation of damping with frequency,'the
input power-method can be used to get some approximate idea. Finally,
several new methods developed specially for evaluating the damping of

viscoelastic materials were described.
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The choice of the technique to be used for a particular
application depends on several factors such as : 1) the modulus of the
material, 2) the damping of the material, 3) the instrumentation
avajlable, d) the freguency and displacement amplitude range of
interest, e) the accuracy required in the estimation of the damping,

etc. As a rule, while measuring the material damping by any method

care must be exercised to minimize the errors due to varjous factors

in the data collection, and data analysis process. Some of these

factors are listed below:

1) Specimen mounting - mount the specimen so as to avoid external

losses at the supports, joints etc. A free-free boundary condition is
jdeal for material damping measurements.

2) Transducer/exciter mounting - location and orientation - use of

Tini-accelerometers or non-contacting type of transducers and exciters
is recommended to minimize the effects of the added mass on the
response of the system.

e

3) External disturbances - Minimize the effects of external

influences like, electro-magnetic interference, foundation vibration,
acoustic noise, cable motion, air damping, fluid fiow, etc.

4) Non-linearity of the structure -- such as, rattling, banging, -

whipping of loosely fastened components, violation of "small-
displacement™ theory, non-linear stiffness, non-linear damping, etc.
should be avoided wherever possible.

5) Data analysis - The various signal processing errors that could

arise because of inappropriate selection of the measurement parameters
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such as weighting function, number of averages, amount of overlap,
calibration factor, etc. should be minimized. Errors due to aliasing

and leakage should also be reduced.
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III. LITERATURE REVIEW

Previous Pertinent Work on the Damping of
Composite Materials

Efforts to measure, model and improve the dynamic properties of
advanced fiber-reinforced polymer composite materials have been
reported in several publications in recent years. There is a wide
range of specimen configurations, materials, frequency range, and.
testing conditions, in the existing literature. Bert [55], Gibson and
Wilson [56], and Gibson [57] have reviewed the work of various
investigators in this area.  Schuitz and Tsai [58] have reported the
measurement of elastic moduli and damping ratios of glass epoxy
composite materials. Data on moduli and damping ratios were gathered
by studying the free and forced transverse vibrations of tantilever
beam specimens in the frequency range from 5 Hz to 10,000 Hz. The
elastic moduli showed little tendency to change within this frequency
range, and the damping ratios were typically of magnitude 10'2. They
however, exhibited both frequency and amh]itude dependence. Jones
[59] has measured the damping ratio of steel epoxy composite material
having controlled volume fractions and varying wire sizes.

In a study of dynamic properties of graphite epoxy composftes,
Rehfield et al [60] noticed that these materials experience a
degradation of mechanical properties due to moisture absorption and

presence of elevated temperature environment. Leung [61] has studied

48
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the effects of gamma-radiation exposure on the mechanical properties
of graphite epoxy composites. Interlaminar shear strength and the
damping ratio showed an initial increase, followed by a decrease as
the dosage of the gamma radiation was increased. In another study,
Springer and his co-workers [62-64] have made an extensive
investigation on the effect of moisture absorption and désorption on
the dynamic properties of graphite epoxy and glass epoxy composites.
The effect of these properties on the damping capacity, however, was
not included in their study.

The effect of temperature on the damping and modulus of composite
materials has also been studied. The variation of Young's modulus
(E), and loss factor g with temperature at fixed frequency-and at low

cyclic.strain amplitude are typically of the form shown in Figure 5

[65] .-
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Figure 5. Variation of Storage Modulus and Loss Factor With
Temperature for Typical Damping Materials
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Three distinct regions are observed, namely the glassy, transition
and rubbery regions. In the glassy region E is high and 5 is low; in
the transition region E varies rapidly with temperature and 9 is high;
in the rubbery region E varies more slowly with temperature and 7 is
lower than in the transition region, although not-always as low as in
the glassy region. For many materials, not one but several transition
regions may occur, which usually merge into one another. Yakovlev and
Bykovskii [66] have studied the effect of temperature on glass fiber
epoxy composites. Their results indicate that the variation of
damping with temperature depends on the kind of fiber, fiber length
and orientation. The authors also noted that, at cryogenic
temperatures, the damping of the glass epoxy composites was much lower
than the damping at room temperature.

The effect of fiber orienfation and lamination on the'e]astic.
modulus and damping capacity of composites has been studied by some
investigators [67-73]. In most composite materials, it has been found
that the damping is minimum and stiffness is maximum at/OO fiber
orientation, i.e., in the fiber direction. As the orientation angle
is increased, the general trend is for the damping to increase up to a
certain value, and the stiffness to decrease. For carbon fiber epoxy
composites, the maximum damping is reported to occur at a fiber
orientation of about 67°. According to the study by Mazza et al.
[68], cross-ply glass fiber reinforced composites have considerably
more damping than 0% unidirectional fiber-reinforced composites.

Adamsrand Bacon [70], in their study noted that the damping of



51

graphite fiber-reinforced composites, decreased slightly with the
cross-ply ratio [ratio of the total thickness of layers of 0°
orientation to total thickness of layers of 90° orientation].

The effect of imperfect interface bonding on damping
characteristics of composites has been investigated by Kishore, et al.
[74,75]. Very high loss factors were obtained, and the loss factors
were strongly dependent on the coefficient of friction.at the
interface. Nelson, et al. [76,77] have also noticed that slip in
unbonded regions of the interface caused a significant increase in
damping. |

There is some promise that damping could be used qualitatively to
detect damage in composite materials since the damping is quite
sensitive to damage in composites. Gibson and Plunkett [78], in their
study, progressively damaged cross-ply E-glass composite_beams with
Targe amplitude vibration and determined changes in damping and
natural frequency. They found that miprostructura1 daniage could
cause as much as a 350% increase in damping and at the same time
reduce the natural frequency by 5% or less. Adams [79], has used
frequency shifts of longitudinal modes in a glass epoxy tube cross
sectional area. Cawlay [80,81], has extended Adam's work to two
dimensions, using modal analysis and finite element analysis to defect
and locate localized damage in cross-ply and single-ply graphite epoxy
plates. The information on the variation of damping with the number
of loading cycles has been most inconsistent. The general trend is

for the damping to increase with the number of loading cycles [82.83].
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In contrast to this general trend, Kim and Matthews [84], noticed a
rapid decrease in damping in the first few cycles, followed by a
gradual decrease after that. This initial rapid decrease in the
damping was attributed to the residual strain caused by the mismatch
between the fiber and matrix thermal-expansion coefficients.

Finally, the mathematical prediction of the dynamic properties of
Jaminated composite materials has been investigated by many authors,
Hashin [85] has predicted the complex moduli of unidirectional fiber
reinforced materials based on the properties of resin and fiber.
Gibson and Plunkett [78] have described a mathematical model for
predicting the effective complex moduli of unidirectional and cross-
ply glass epoxy beams in flexural vibration. This model was an
extension of Hashin's model. Chang and Bert [86] have investigated

the ang]ytica1 characterization of the damping and stiffness behaviour

Adams and Bacon [70], have proposed a model for predigting the
damping of a narrow ang]e-p]j laminated plate. This method has
recently been further developed by Ni and Adams [87]. They have shown
good agreement can be obtained between predicted and measured values
of damping and stiffness of carbon and glass fiber-reinforced plastic
beams. 1In an accompanying paper, Lin, Ni and Adams [88], have used a
finite element model of Cawley and Adams [89] to predict the natural
modes and damping capacity of carbon and glass fiber reinforced
laminated plates. Hwang and Gibson [90,91], have demonstrated the

application of a finite element model based on the strain energy
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approach for predicting damping 1n discontinuous fiber composites.
Johnson and Kienholtz [92], have also used the finite element method

to predict the damping in structures with constrained viscoelastic

Tayers.

Previous Pertinent Work on the Damping of
Structural Joints

It has been found that nearly 90% of the total damping which
occurs in real structures usually arises in the structuraT Joints
[93]. The energy dissipation in a joint is a complicated process
involving several mechanisms, the relative significance of which
depends on the joint conditions. Because of the complexity of the
problem it appears that very 1ittle work is being done in analyzing
the damping in joints and built-up structures. In an adhesive bonded
joint, it is the interface between the adhesive and the adherant that
is more prone to environmental degradation and which plays .a key role
in the damping capacity of the joint. A major source of damping in a
joint 1s the Coulomb friction damping which arises due to frictiona1
forces arising from the relative motion of two contacting surfaces.
This 1is usually modelled by a constant force which is proportional to
the normal load between the surfaces and is directed against the
velocity vector at each instant. But, in actual practice, the amount
of energy dissipated depends on both the normal and tangential forces
in a complicated and non-linear fashion [94-99]. Another source of
damping in a joint is that due to pumping of air, water or other

f]uids_through highly constrained passages [100,101]. The damping is

-
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caused by the change in spacing of the parts. For example, 1f a rib
is riveted or spot-welded to a plate, it will not make contact at all
points. If the combination is then bent, the clearance between the
two will change, thus 'puhping' the surrounding fluid (air or water)
through the narrow passage between them. The viscosity of the fluid
will cause the damping.

The damping in a joint is generally non-Tinear. Most attempts
are made to linearize the equations in some way [102,103]. A very
useful method is to calculate an equivalent viscous force component to
obtain the enegy dissipation. Crawley and co-workers [104-105], have
developed a method called the force-state mapping for identifying the
non-linear properties of structural members such as Joints. The
technique includes the use of very accurate instrumentation to measure
fhe force transmission properties of a joint as a function of the
relative displacement and velocity across the joint; i.e., as a
function of the full mechanical state of the joint. The force-state
map'of a general linear spring mass damper system would ge a plane
whose slope with respect to displacement would be the linear stiffness
K and with respect to velocity would be the linear viscous damping.
Any deviation in a force-state map from a flat plane is an indication
of a nonlinearity in the system. The force-state mapping technique has
been shown to provide a good method for characterizing the dynamics of

joints and structural elements.
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IV. MEASUREMENT OF DAMPING OF GRAPHITE EPOXY MATERIAL

The main objective of the work reported in this chapter was to
determine experimentally the material damping of the graphite epoxy

material used in the construction of the truss system of the Hubble

- Space Telescope. Other objectives were: a) to study the effect of

outgassing (moisture desorption) on the damping of the material, and
b) to determine the influence of temperature (both high and low) on
the material damping values. Damping measurements were made on both
tube and beam specimens. These samples were supplied by the NASA
George C. Marshall Space Flight Center. The following sections
describe the test strategy, experimental apparatus, test procedure and

results and discussions.

Tube Specimen

-

The composite tube supplied by NASA was in the %orm of a
cylindrical tube with 6.17 cm outer diameter, 0.16 cm wall thickness,
and 95.5cm length. The tube was tested to evaluate its damping ratio
value under normal atmospheric conditions and in a vacuum chamber to

simulate the conditions in space.

Damping Measurements in Normal Atmospheric Conditions

Both free vibration and forced vibration methods were employed.

The ambient temperature averaged 27°%¢C during the whole period of
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experimentation. The tube specimen was first tested with two
different types of edge support conditions. They were: 1) knife edge '
supports to simulate idealized simply-supported boundary conditions at
the edges, 2) a three-po{nts support to hold the tube at the edges.
Then a free-free support condition with no constraints at the edges,
was utilized which was found to be most suitable and consistent for
accomplishing our main objective.

The idea of using knife edge supports at the two ends of the tube
specimen was to simulate the idealized simply supported boundary
condition. This type of boundary condition is normally used in the
theoretical analysis for its mathematical simplicity. But to simulate
such a boundary condition is rather difficult in practice. The
constraint here is that the support should not allow any axial or
vertical deflection of the specimen at the ends, and allow any slope
at the ends due to any bending moment. With this in mind, 1t was
decided to use circular knife edge supports to simulate this boundary
condition. The design was such that one knife edge would sdﬁport the
tube from the inside and the other would support it from the outside
at each end location. Each circular outer knife edge was made of
stainless steel in two halves to facilitate easy mounting. Each inner
knife edge was also made from stainless steel but was only in one
piece. A housing to hold the knife edges was designed and fabricated.
This housing allowed the movement of the knife edges in the axial

direction for fine adjustment. The housing was made from mild steel.



{

¢

¢

57

Figure 6 shows the knife edges and housing which were designed. Two
such supports were fabricated, one for each end of the tube.

Some preliminary measurements of the damping value of the tube
specimen with the knife edge supports indicated a large contribution
from the edge supports. Hence, in order to reduce the infiuence of
the support damping and to measure only the material damping, & new
type of edge support was designed and fabricated as shown in Figure 7.
The idea here was to support the tube at each end at three points

which were 120 degrees apart.

Free Vibration Experiments

A schematic diagram of the experimental set-up used -1'n the free
vibration tests is shown in Figure 8.’ The test set-up consists of a
non-contacting type (capacitive) displacement transducer (ASP-20)
a]gng with a measuring amplifier (Accumeasure System 1000 made by MT
Instruments). A holder was developed for the pick-up to allow for
easy adjustment of the gap between the specimen and probe"surface.
The output in the form of voltage from the transducer was fed to the
dual channel signal analyzer (B&K type 2032). The specimen was
excited for free vibration with an impulse using a small hammer and
the vibration displacement as a function of time was recorded on the
analyzer. The damping ratio value of the tube specimen was obtaﬂ'ned
from the time domain data by the logarithmic decrement method. The
accuracy of estimation of the damping value was later improved by
fitting a curve to the data  obtained using a least-squares error

criterion.
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The experiments were conducted using both the knife edge and
three-pcints supports. The specimen was held in the supports at both
the ends. The tube specimen with the supports was clamped to a rigid
stand with a heavy base specially fabricated for this purpose. With
the knife edge supports, three sets of results were cbtained, namely
1) for very large amplitudes of displacement, 2) for moderate
amplitudes of displacement and 3) for very small amplitudes of
displacement. The values of damping ratio obtained using the
logarithmic decrement method in the three cases are summarized in
Table 1. It can be seen that the damping ratio is of the order of
1.0% in all the cases. In order to obtain a better estimation of the
damaing ratio value, a least squares curve-fit was used for the time
domain data as mentioned earlier. Figures 9 through 11 show the
Teast-squares fit for the experimental data obtained with the knife
edge supports. Note that in Figures 9 through 11 the displacement
amplitude is plotted on a logarithmic scale. The tube damping ratio
value obtained from‘the least-squares fit procedure agrees’with that
obtained from the logarithmic decrement method. It is seen that in
Figure 11, for very small displacement amplitudes, there seem to be
some oscillations in the decay data. This is perhaps due to the
external noise, since at very small displacement amplitudes, the

signal to noise ratio is low.
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Table 1

Damping Ratio of the Tube Specimen From
Different Cycle Ratios

Casel Case 2 Cycle 3
Max. Displacement Max. Displacement Max. Displacement
=3 -3 -3
3.6 x 10 cm. 1.3 x 10 cm. 0.1 x 10 cm,
< =1.09% < =1.07% ¢ =1,19%
0-35 0-35 0-20
¢ =1.00% < =1,13% < =1.47%
0-20 0-20 0-10
< =0,97% < =1,16% ¢ =0.91%
0-10 0-10 10-20
¢ =1.04% =1,10% < =1.09%
10-20 10-20 0-15
. =1,20% =0,99%
- . 20-35 20-35
=1.06% < =1,09% ¢ - =1.16%
average average ” average

Legend: the subscript 0-35 indicates that the damping ratio was
obtained from the vibration decay measurement from 0 to 35 cycles.
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Experiments were repeated on the tube specimen using the three-
points supports at the ends of the tube. The same experimental set up
as described earlier was used in this experiment. The damping ratio
value with this type of support was also about 1.0%. Experiments with
this type of support showed that the damping ratio value is very
sensitive to the positioning of the three supports. For the case of
the knife edge supports, a Fourier transform of the time domain data
indicated a dominant resonance peak at a frequency of 390 Hz, when the
length between the supports was 91.4 cm (36 inch). For the case of
the three-points support, the resonance frequency was reduced to 299
Hz for the same length between the supports.

The theoretical resonance frequencies of the tube specimen with
simply-supported ends for flexural vibration were determined using
beam theory. From this analysis, the first'and second modal
frequencies were found to be 321 Hz and 1287 Hz respective]yi Hence,
it is seen that the experimental resonance frequency of 390 Hz, is not
matched very closely by that of the theoretical first bending mode
frequency of .the tube specimen. The discrepancy between the two
values can be attributed to several factors, such as the knife edges

not exactly simulating an ideal simply-supported boundary condition,

" the material modulus being different in different directions of the

tube specimen.
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Forced Vibration Experiments

A schematic diagram of the experimental set-up used for
conducting forced vibration tests is shown in Figure 12. In this set-
up the specimen was excited by means of a shaker (B & K 4809) driven
by a random noise generator. The shaker was suspended using a very

soft rubber rope thus enabling the natural frequency of the shaker

'suspension system to be much Tess than the natural frequency of the

test specimen. In the present case the natural frequency of the
suspension system was observed to be about 1 Hz. The experiments were
performed on the specimen using the same edge supports as in free
vibration tests, namely, the knife edge supports, and the three points
supports. The-frequency response of the specimen in the form of its
reéeptance (displacement/force) was measured using an impedance head
(B&K 8001) and a dual channel signal analyzer (B&K 2032.)  From the
fesponse curve the half power points and hence thelr ba;dwidth of

frequency separation (Af) and the natural frequency (fﬁ) of the
specimen were measured. The damping ratio (¢) is given by ¢ = Af/2fn.

The improved half-power points method using a curve-fit analysis
(chapter 2) was later used in all the cases to obtain a better
estimation of the damping ratio. The results were not very
consistent, the 1owe;<,t value of the damping ratio measured with this
support was of the order of 0.57%. Using the same experimental set-
up, a second set of experiments was conducted on the tube specimen

with the ends supported by means of three-points support. The damping
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ratio value obtained in this case was of the order of 1.15%. The
difference in the damping ratio of the composite specimen with the two
edge support conditions confirms that the edge supports had
considerable influence on the damping ratio of the specimen.

Having established that the damping ratio of the composite tube
is strongly dependent on the end support conditions, it was decided to
support the spec1men”so that the two ends of the tube were not
constrained at all. This type of support simulated free-free béundary
conditions at the two edges. A schematic diagram of the experimental
set-up for this case is shown in Figure 13. The specimen was
carefully mounted directly on the shaker and the impedance head using
a supporting ring (made in two halves) with an interior kﬁife edge as
shown in Figure 13. The inner knife edge of the ring allowed the tube
to be held firmly in the ring. The ring also had a tapped hole on its

outer surface to connect it to the Impedance head and shaker assembly.

Stainless steel ring

A //Compoﬁfetube
el

. Impedance head

P P -

A ; %F Force signal

™ To power
= gmplifier

Acceleration
Signal

A A AV AV v A A A A AR A AV A ARy Aaye

Figure 13. Tube Specimen with Free-Free Boundary Conditions
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The tube with the free-free edge conditions was then excited
using a random excitation signal in the frequency range of 0-800 Hz.
A domiﬁant peak at 509 Hz was observed in the frequency response plot
as shown in Figure 14. The response was later measured by zooming
into this peak to get better frequency resolution. The so-called zoom
analysis is actually a band selectable Fourier analysis, in which
Fourier transform based digital spectral analysis is performed over a
frequency band whose upper and lower frequencies are independently
selectable. In the baseband analysis, Fourier transform is computed in
a frequency range from zero frequency to some maximum frequency. This
digital Fourjer transform is spread over a fixed number of frequency
Jines (typically 1024) which therefore limits the frequency resolution
between lines. Zoom analysis can provide an improvement in frequency
resolution of more than a factor of 100, as well as a 10 dB increase
in dynamic range compared to baseband Fourier ana]ysis[lé]. In the
present case, the frequency difference between any two consecutive
measurement points on the analyzer was decreased from 1 Hz to 0.125
Hz, through the zoom analysis. With this set-up the damping ratio

value of the specimen was measured and found to be about 0.13%. This

"was the mean value from 10 trials. There was a variation of about

£0.03% in the values of the damping ratio ¢. This value is about 8
times lower than that obtained earlier, and hence was believed to be
mostly due to the material damping of the specimen as there were no

structural joints and the specimen was not constrained at its ends.
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The measurements were repeated several times on different days, in
order to check the consistency of the result. Similar results were
obtained on all the occasions. The experiment was also repeated with
two other types of excitation signals, 1) pséudo random noise and 2)
variable sine with manual sweep. Similar results were obtained with
both of these types of excitation.

The next course of investigation was directed at calculating the
damping induced by the supporting ring used in the above free-free
experiments. In order to check the damping induced by the supporting
ring, measurements were made with the top half of the ring removed.
The specimen then was supported only by the bottom half of the ring.
It was observed that the natural frequency of the specimen (first
mode) increased to a value of 552.5 Hz due to the influence of the
reduced mass of the supporting ring. But the damping ratio value
obtained was the same as that obtained with the full supporiing ring,
namely 0.13%. This gave more confidence in the measured value of the
damping ratio of the specimen. The dominant peak at 509 Hz’as shown
in Figure 14 corresponds to the first bending mode of vibration of
the tube. This was revealed by carrying out a modal analysis of the
tube specimen. The measured mode shape is shown in Figure 15.

The next set of experiments was conducted on the cylindrical tube
specimen using the free-free boundary conditions (half ring) in order
to study the variation of the damping ratio value with different modes

of vibration. Figure 16 shows the frequency response curve of the

specimen in the frequency range of 0 to 3.2 kHz. The numerical value
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of the resonance frequency of each mode of vibration cannot be
accurately estimated from this plot due to its large frequency range
and hence poor frequency resolution. To reduce this problem, two
techniques may be used, a) reduce the frequency range of analysis, b)
zoom the frequency response plot at the natural frequency of interest.
The resonance frequencies estimated from the plots obtained through
zoom analysis for the first six modes of the specimen are given in
Table 2. It is seen from the table that the damping ratio value
increases with the mode number. This increase could be attributed to
increased frictional losses at the center support due to increased

curvature of the mode shapes at the support point.

Table 2

Damping of the Tube Specimen in Different Modes
. for Free-Free End Conditions

Peak No. Frequency (Hz) Damping Ratio
1 §52.5 0.13% -
2 1514.0 0.25%
3 1873.0 0.33%
4 2204.5 0.35%
5 2232.0 0.36%
6 2841.8 o 0.36%
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To summarize, all the above experiments were performed on the
cylindrical graphite epoxy tube specimen under normal atmospheric
conditions. The damping ratio value was measured using free and
forced vibration techniques. Al1 of the damping results from the
above experiments are summarized in Tabie 3. The damping values
obtained using the free-free boundary condition for the edges are
believed to represent most closely the material damping of the
specimen. As stated earlier the damping value is significantly
influenced by the edge support conditions. Edges and support fixtures

can normally be expected to increase the value of damping.

Tabel 3

Damping of the Tube Specimen for the First Bending Mode
Using Different End Conditions

. End Condition : Damping Ratio “Frequency
Knife Edge Supports 0.90 - 1.10 % 390 Hé
Three-points Supports 1.00 - 1.20 % 298 Hz -
Free-Free 0.10 - 0.15 i 553 Hz
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Damping Measurements in a Vacuum

A vacuum chamber as described in this section was designed and
built to test the cylindrical graphite epoxy specimen. The following
factors were considered for the design of the chamber: 1) The chamber
should have a small volume which should thus require a short time to
create a vacuum in the space. A small volume in the chamber should
also make it possible to heat the specimens and degas them more
easily. 2) It should have a minimum number of connecting junctions in
order to avoid leakage problems. 3) It should be made so that it is
convenient to excite the cylindrical graphite epoxy specimens with
different edge support conditions. 4) It should be made convenient to
test the cylindrical graphite epoxy specimens of different lengths. 5)
It should be rigid and should be isolated from the vibration of

struc?ura] parts. Keeping these factors in mind, two designs were

. considered: 1) A rectangular box type enclosure for the spécimen; i1)

A cylindrical chamber with end flanges. In view of the difficulties
that were envisaged in providing vacuum sealing around all the edges
and also the difficulties that are likely to be encountered in
providing feed-throughs, a rectangular type of chamber design was
discarded.

It was decided to use a cylindrical chamber design whose details
are shown schematically in Figure 17. It was also felt that it would
be easy to procure cylindrical stainless steel tubes which would then
make it possible to avoid many welding and sealing problems. A four-

way stainless steel cross (15.24 cm 1in diameter) was used to support
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the chamber as shown in Figure 17. The feed-throughs, ports, etc.
were provided at the top of the cross. A heating coil was provided
inside the chamber for heating the graphite epoxy specimen. This
heating coil was necessary to ensure that the composite material
outgassed rapidly. Two six-inch stainless steel tubes (of 33cm
Tength) with end flanges were connected to the flanges on the two
sides of the cross as shown in the figure. The bottom flange of the
cross was connected to the vacuum pump unit. The joints at the
flanges were provided with 0-rings and were sealed with vacuum grease.
Considerable time and effort was spent to detect the leaks in the

vacuum system and in the vacuum chamber. The system was able to

produce a vacuum pressure of aboutvlo'storr (1 torr = 1 mm of Hg).

The tube specimen was carefully placed and positioned in the
Qacuum chamber. A free-free edge support conditicn was simylated for
the specimen by the use of the full ring with an inner knife edge as
discussed earlier. The tube specimen was excited by meéns of an
electrodynamic shaker. Figure 18 §hows the fixture designed for
exciting the tube specimen in the chamber for forced vibration
experiments. The excitation force from the shaker was transmitted to
the composite tube with the help of a thin rod and a metallic bellows
assembly. The end flanges of the bellows were connected to the méting
flanges of the connecting elements (half nipples) by using copper
gaskets and screw nuts. Care was taken to see that the specimen was

in a horizontal position and that it did not touch the sides of the
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vacuum chamber. Figure 19 shows a photograph of the vacuum chamber in
its assembled form, and Figure 20 is a cut-out view of the chamber

showing the composite tube, heating coil and the impedance head.

Experimental Procedure and Results

As before, the frequency response measured in the present case is
also the receptance, which is the ratio of the displacement to force.
The damping ratio and the undamped resonance frequency were estimated
using the half-power points method along with the curve-fitting
technique which was discussed before. Random excitation with a
Hanning window was used in all the experiments. Some experiments were
repeated with a swept sine excitation and similar results for the
damping ratio value were obtained as with random excitation. The
random excitation was chosen since results are obtained faster with
éﬁis type of excitation than with sine sweep testing. The response
curve was zoomed in the frequency range of 450 Hz to 550 Hz to obtain
the first bending mode of vibration. This was found to be the best
set-up for a good frequency resolution.

First, measurement of the damping ratio of the tube specimen was
made while the tube was in the vacuum chamber before the air was
pumped out. Several measurements were made in order to check the

repeatability of the results. Figure 21 shows the result of a

measurement made on the tube at 27°¢ (80°F) under atmospheric

conditions before the chamber was evacuated. The damping ratio
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measured was about 0.10% and the resonance frequency was about 531.9
Hz. This value of the damping ratio is somewhat close to the value of
0.13% obtained earlier for the same specimen in tests performed in
normal atmospheric conditions. The slight discrepancy between the two
values can be attributed to the difference in the experimental
configuration.

Later the end flanges of the vacuum chamber were closed and the
vacuum pump was started. The damping ratio value and the resonance

frequency of the tube specimen were measured on each day for the next
two days. The vacuum pressure was observed to be 10'2torr on the
second day and lo'storr on the third day. The temperature inside the

chamber was still the ambient temperature, namely 27°c (80°F). The
damping ratio value of the specimen was measured to be 0.069% on both
of the days. Figure 22 shows the frequency response plot measured on
the second day.

The heating of the specimen was started on the thi;d day. A
heating coil was placed inside the vacuum chamber below the tube
specimen (before pumping was started). Care was taken to see that the
coil did not touch the tube anywhere. The current through the coil

was gradually increased until the temperature of the space inside the

chamber was 94°C(200°F). The tube was kept inside the chamber at this.
pressure for a period of one month. The objective was to desorb the

moisture from the tube material.
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At the end of the fourth week the heating of the tube specimen
was stopped. The tube was then gradually cooled to room temperature.
The damping ratio value and the resonance frequency of the tube

specimen were measured. When the temperature of the chamber was

cooled to 26°C (atmospheric conditions) it was jnteresting to observe
that the damping ratio value of the tube was 0.063%. This value is
very close to the damping value cbtained for the tube specimen four
weeks earlier before the heating was started.

Finally after cooling, the pressure in the chamber was restored
to atmospheric conditions and the damping ratio value of the tube was
measured again. It was found to be 0.083% and the resonance frequency
wés 531.20 Hz. Earlier, under atmospheric pressure, the tube damping
ratio value was measured to be 0.10%.

. The tube was then carefully dismantled and it was weighed in a
precision balance. The difference in weight of the tubezbefore and
after heating was found to be 4.20 grams. The percentage change in
the weight of the tube from its original weight was 0.9%. This was
assumed to be caused by the loss of moisture which occurred while the
tube was degassing. The change in damping ratio value due to
outgassing of the tube specimeh was observed to be 0.016%.

"A11 of the results discussed so far in this section are

summarized in Table 4.
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Table 4

Summary of the Damping Data of the Tube Specimen in a Vacuum

CHAMBER DAMPING MASS OF

ACTMTY
PRESSURE | RATIO - THE TUBE

1. Before pumping the air out Atmospheric| ~0.10 Z | 466.8 groms

- -2

2. Immediately after pumping 10 torr 0.07 Z
=3

3. Continued pumping—2 days 10 torr

0.07 % -

4. Continued pumping and -2 =3
heating the tube to about 10 — 10 torri o.06--0.08 % -

100 C for 30 doys

5. Stopped heating and
pumping. Atmospheric
conditions restored

Atmospheric!  go8 % 462.5 grams

o Mean valus of 10 trials 1 torr= 1 mm Hg
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Temperature Effects on the Damping of the
Graphite Epoxy Material

The next course of the investigation was directed at finding the
effects of temperature on the damping of the graphite epoxy material.
Experiments were conducted on both tube specimen and some beam-like
samples using specially built temperature chambers. Forced vibration
experiments were conducted on these specimens with free-free boundary
conditions. A1l of the measurements were made in air, since, it was
more convenient to conduct experiments at controlled temperatures in

air than in a vacuum.

High Temperature Experiments
_  Figure 23 shows a schematic diagram of the experimental apparatus
used to study the effects of high temperatures on the damping of beam
gimples. The specimens were carefully mounted inside the temperature
chamber and were supported at the center by a steel rod.r The steel
rod was tapped and attached through a hole in the specimen by means of
a small nut. The other end of the steel rod was connected to the
shaker via an impedance head. The force and the acceleration signals
from the impedance head were fed to the FFT analyzer after
amplification by the charge amplifiers. The temperature inside the
chamber was monitored and controlled precisely by two chromel-alumel
thermocouples and a temperature control programmer. As before, damping

ratio values were extracted from the receptance plots using the

improved half-power points method.
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Figures 24 and 25 show the variation of the damping ratio with
temperature for graphite epoxy beam specimens of two different
lengths. The temperature where the first peak appears is believed to
be the glass transition temperature of the materfal. As can be seen
from these figures, the variation of ¢ with temperature has almost the
came trend in both cases, and also it agrees well with the standard
plot found in the literature [see Figure 5 ].

A similar experiment was conducted on the tube specimen. Because

of the 1imitations of the heating equipment, it was possible to raise

the temperature of the tube only up to 3009C. For better temperature
control, the temperature of the tube was measured at three points
along its length. The temperature of the tube was gradually increased -
from atmospheric temperature and damping measurements were made at
regular intervals. The frequency response was measured when the tube
temperature was the same at all the three points. FTgur; 26 shows

the final result for the variation of ¢ from atmospheric temperature

to about 300°C. This is again for the first bending mode of vibration
of the tube. it is seen‘from this figure that the trend in the
variation of ¢ is somewhat similar to that of the beam results, i.e.
the damping ratio increases with temperature. The discrepancy 1nhthe
absolute value of the damping ratios and the value of the glass
transition temperature as observed in the three plots could be
attributed to a) difference in the geometry of the specimens, b)
difference in the frequencies of vibration and c) difference in the

lamination (fiber winding) of the beam and the tube samples.
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In order to gain confidence in the experimental methodology
followed, and to validate the results obtained so far, it was decided
to conduct the same temperature experiments on some metal beams.
Figures 27 and 28 show the variation of damping with temperature for
an aluminum beam and a stainless steel beam respectively. As can be
seen from theserresu1ts, the damping capacity of these materials is

almost constant with temperature.

Low Temperature Experiments

The experimental apparatus used previously for conducting high
temperature experiments was not suitable for conducting low
temperature experiments. Hence, an entirely new temperatdre chamber
was designed and fabricated. It was initially planned to conduct the
low temperature expériments in a vacuum chambéf. Thus, the set-up
shown in Figure 29 was developed. As can be seen from the figure, the
specimen to be testea was enclosed in a temperature chamber; which, in
turn, was placed in a vacuum chamber. The specimen was connected to
the shaker (the shaker was kept outside the temperature chamber, but
inside the vacuum chamber) by means of a steel rod and an impedance
head as was done during the high temperature experiments. The
temperature chamber consisted of double-layered side walls forming a
closed cavity. The cavity had an inlet and an outlet for the floﬁ of
liquid nitrogen through it. The outside surface of the chamber was
well-insulated so that only the specimen which is inside the chamber
will be cooled. There was also a small heating coil in the chamber to

heat the specimen if required. The flow of liquid nitrogen was
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controlled by varying the pressure in the 1iquid nitrogen dewar. Dry
nitrogen gas from a cylinder was sent into the dewar, increasing the
pressure and thus forcing the 1iquid to flow out through the siphon
into the chamber. The temperature in the chamber was controlled by
adjusting the flow rate and also when required using the heating coil.
A11 the hoses and tubes were insulated to minimize thermal Tosses.
Efforts to maintain a vacuum and low temperature conditions inside the
chamber were unsuccessful because of many experimental difficulties.
Hence all the experiments were conducted under atmospheric
pressure. Experiments were done on the following four samples:
1) Graphite epoxy beam of dimensions 16.5 x 2.5 x 0.3 cm, 2) Graphite
epoxy beam of dimensions 25.4 x 2.5 x 0.3 cm, 3) Aluminum beam of
dimensions 25.4 x 2.5 x 0.3 cm and 4) Graphite epoxy beam of

"dimensions as in 1, with a simple Tap joint having an overlap of 8.9

cm. -

The procedure used in the experiment was as fo]]qys. The
specimen was first carefully mounted inside the temperature chamber
and was supported at the center by a steel rod as explained before.
The force and acceleration signals from the impedance head were fed to
the FFT Analyzer. First, damping measurements were made at atmospheric-
temperature. Then the sample was cooled to the desired temperature by
feeding an appropriate amount of liquid nitrogen into the cooling
chamber from the dewar. The temperature of the sample was monitored

precisely by means of two chromel-alumel thermocouples attached at two

different locations on the sample. The difference between the
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temperatures at the ends of the sample never exceeded 1 to 2°c during
the experiment. The frequency response in terms of the receptance
function (displacement/force) was measured on the FFT analyzer.
Random signal excitation was used and 100 averages were taken for each
measurement. The whole measurement process took only about 50
seconds. But more time was spent in achieving a stable temperature,
since the temperature control was done manually by adjusting the rate
of flow of liquid nitrogen. The experiments were quite consistent and
the results were repeatable. The following paragraph describes the
results.

Figures 30 and 31 show sample frequency response curves for the

second specimen tested at temperatures of 24°¢ and -130°
fespectively. The peak at 262 Hz corresponds to the first bending
mode of vibration and the peak at 1330 ﬁz corresponds to the third
bending mode. All the damping measurements were focused on these
modes. It was not possible to excite even numbered modes “since the
beam was excited at its center which is a node point for even numbered
modes.

Figures 32 through 36 éhow the variation of damping ratio with
temperature for the four samples mentioned before. The curve-fitting
method based on the half-power points method was used in each casé to
compute the damping ratio from the receptance plots. Figure 32

corresponds to the first graphite epoxy beam specimen. The damping

ratio value of the sample was 0.23% at 24°C and was reduced to about
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half this value (0.12%) when the temperature was reduced to about -

60°C. There was a small difference of 3 Hz in the modal frequency
between the two readings. A somewhat similar trend can be found in
the other plots as well. It is particularly clear from Figure 36 that
there is a slow and gradual decrease in the damping ratio value from
an atmospheric temperature to cryogenic temperatures. This is in

agreement with some data available in the literature[66].
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V. DAMPING OF BONDED STRUCTURAL JOINTS

Structural adhesive bonding of composites to composites, as well
as composites to metallic components, has developed rapidly due to
advances in composite materials and adhesive bonding techniques.
Structural composite bonded joints are primarily of the overlap type
(single or double overlap). Scarf joints are structurally efficient,
but are difficult or costly to manufacture. Butt joints although
simple to process, are not considered for primary structural joints.
This is because of their limited load carrying capacity due to the
presence of cleavage stresses when the loading is not truly tensile.
Angle joints are not usually preferred but are sometimes necessary.
Tube joints are difficult and costly to manufacture. -

The paper by Goland and Reissner [106] is regarded as a classic
work in the aréa of static analysis of a simple lap joint. Giﬂand and
Reissner studied the stresses in bonded single lap joints for two
different c-ases. In the first case, the bond layer was very thin and
had no contribution to the joint flexibility. On the other hand, in
the second case, the bond layer was so thick that it was the primary
contributor to joint flexibility. 1In both cases, they derived
equations for evaluating the shearing and normal stresses in the bond
layer as well as those in the jointed plates. They found for equal
thickness isotropic plates, that the bond layer shear stress has a

nearly uniform distribution except for large concentrations near the

101
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ends of the joint. The peel stress (stress perpendicular to the bond
layer) also had high values near the joint edges although not nearly
as high as the inflexible bond case.

In the Goland and Reissnmer analysis, the peel and shear stresses
were assumed constant across the adhesive thickness. In Tater works
by 0jalvo and Eidinoff [107], Carpentor [108], Kline [109], attempts
are made to incorporate a linear variation of these stresses across
the thickness of the adhesive. Delale and Erdogan [110] have carried
out the stress analysis of a bonded lap joint system assuming that the
adherents are elastic and the adhesive is linearly viscoelastic.
Renton and Vinson [111], and Delale, Erdogan, and Aydinoglu [112] have
attempted to include anisotropic adherents in the mathematical model.

] Hart-Smith [113-116] was the first investigator to advocate the
ise of continuum mechanics in the analysis of bonded joints. He has
analyzed double-lap, single-lap, scarf, stepped-lap and tapered-lap
configurations. Tensile, compressive and in-plane shear stresses in
the.system were considered based on an elastic-plastic analysis of the
configuration. The author has also discussed joint efficiency and
potential failure modes for each of the above configurations.

The above review indicates that much of the work done in this
area has been confined to the static analysis of bonded joiﬁts.
However, a lot of work has been done in the area of dynamics of
sandwich beams and plates, consisting of a viscoelastic core material

constrained between two elastic layers. The reader is referred to

excellent review articles by Mead [117] and Nakra [118], for more
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information on this sﬁbject. only recently, two papers have been
published on the subject of vibrations of bonded joints. The one by
Saito and Tani [119], deals with the vibrations of a bonded 1ap joint
system and the other by Prucz [120] deals with a quasi-static analysis
of a symmetrical double-lap configuration. The analytical model
described by Prucz is similar to the one-dimensional model of Hart-
Smith for the analysis of a fully elastic double lap jeint. The
author, however, has incorporated the viscoelastic behavior of the
adhesive layers in the joint. A quasi-static analysis of constrained
layer damping treatment is utilized to evaluate the joint damping
properties. Saito and Tani [119] have derived equations for
predicting the modal parameters of the coupled longitudinal and
fféxura] vibrations of a system consisting of a pair of elastic beams
Tap-jointed over a certain length by a viscoelastic material.
Numerical results are presented for the case of fixed-fixed boundary
conditions at the ends. A simplified version of this model to include
composite beams has been developed in the present investigation. The

details of this analysis together with numerical and experimental

. results are presented in this chapter. Some experimental results on

the damping of other types of bonded joints are also included in this

chapter.
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Analytical Modeling of the Flexural Vibrations
of a Bonded Lap-Joint System

The system chosen for study is as shown in Figure 37. The
objective is to arrive at a suitable mathematical model to evaluate
the damping ratios and resonance frequencies of the system for free
flexural vibration. The system consists of a pair of rectangular
beams lap-jointed over a certain Tength. The bond between the two
beams is achieved by means of an adhesive whose thickness is small
compared with those of the beams. The unjointed ends of the beams may
have any physically realizable boundary conditions, but, in this cacse
are assumed to be simply-supported. Equations of motion are, first,
derived assuming the beams to be made of composite materials using the
complex modulus approach. The adhesive 1s assumed to be linearly
viscoelastic and the widely used Kelvin-Voight model is used to
répresent the viscoelastic behavior of the adhesive. Both the complex
modulus approach and the Kelvin Voight solid model appr9ach are
jdentical in that the constitutive relationship between stress and
strain is similar to Hooke's law, but includes a complex rather than a
real material constant. According to this approach, the deformation
field induced in a material by a simple harmonic oscillating Toad
contains an elastic or storage component, and a dissipative or loss
component. This model is restricted to cyclic oscillations, and is
believed to be closely associated with a simple physical

interpretation of a viscoelastic behavior.
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Figure 37. Two Parallel Beams with a Lap Joint
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The starting point for the development of this model is the
consideration of the dynamic equilibrium equations of the overlap
(joint) region. The equations of motion in the joint region are
derived using a differential element approach. The transverse
displacements of the upper and the lower beams are considered to be
different. The normal force between each beam and the adhesive layer
is obtained from the Kelvin-Voight viscoelastic model of the adhesive.
The shear force at the interface between the adhesive and the beam is
obtained from the simple bending motion equations of the two beams.
The resulting equations of motion are combined with the equations of
transverse vibrations of the beams in the unjointed regions. These
are later solved as a boundary value problem using a knowledge of the
boundary conditions at the unjointed ends and motion continuity
equations at the ends of the overlap. The eigenvalues and the
eigenvectors of the system are obtained numerically by an iterative

technique using a computer. .

Derivation of the Mathematical Model
The system is hypothetically divided into three parts as shown in
Figure 38. The coordinate system chosen for each part is also shown in

the same figure.

Part 1 - Overlap Region

Although, this portion of the system is jdentical to a three-
layer sandwich beam, the analysis here is somewhat different from that

of a three-layer sandwich beam. This 1is because, in the vibration
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éna]ysis of a three-layer sandwich beam, the displacements of the
upper and lower beams are usually assumed to be identical. 1In the
present case, however, the system configuration does not permit the
inclusion of such an assumption. Several other assumptions are,
however, made in the present analysis as follows: a) the analysis 1s
carried out only for the free flexural vibrations of the system; the
Tongitudinal and rotary inertia effects are neglected, b) there is no
slip at the bond interfaces, c¢) all points on a plane normal to the
longitudinal axis of the beam have the same transverse displacement,
d) the longitudinal force in the adhesive layer may be neglected
relative to those forces in the beams, e) since the thickness of the
adhesive layer is small relative to the thickness of the beam, the
mass (inertia) of the adhesive may be ned]ected, and the normal and
shear forces in the adhesive are assumed to be constant.

A free-body diagram of a differential element of 1engtﬁ dx of the
composite three-layer part of the system is shown in Figure-39. N is
the axial force in the beam, V represents the shear force in the
beams, M is the bending moment in the beam, s is the shear force per
unit length at the bond interfaces, and p is the transverse force per
unit length between the beam and the adhesive. The above quantities
with subécript 1 refer to the upper beam and subscript 2 refer to the

lower beam. Furthermore, y, =y, (x,t) is the transverse displacement

of the upper beam, and y, = y, (x,t) is that of the lower beam.
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The sum of forces in the x-direction on beams 1 and 2 yields,

BN,

N1 + X dx - N1 + sdx = 0, and (5.1)
3N,

N, + 57 dx = Ny - sdx = 0. (5.2)

Equating the sum of forces in the y-direction to the corresponding

inertia forces, we get for beam 1,

av, 82y,
-V V4 gy dx o+ opdx = A dX 5ET o (5.3)
and for beam 2
oV, 3%y,
-Vp + Vp gy dx - pdx = pahadx 3w - (5.4)

Tﬂe term pA in Equations (5.3) and (5.4) is the mass per unit length,
with p representing the density and A representing the cross sectional
area of the beam. Summing the moments about the center of the right

£

edge, for beam 1,

aM, h,
M- M+ a3 dx) - sdx 5 + V;dx =0, (5.5)
for beam 2,
M, h,
My - (M2 + X dx) - sdx 7 + Vde =0 . (5.6)
The simplified versions of Equations (5.3) and (5.4) are:
oV, a1y, ‘ (5.7)

ax TP Ak oEE

av, 8%y,
ax =P = P omEm - (5.8)
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Differentiating Equations (5.5) and (5.6) with resbect to x, and

simplifying we obtain,
oV, 9o2M, h; Os

Frl Tl i (5.9)
and
v, M, h, Os
XTI o (5.10)
From Equation (5.7) through (5.10), we have,
924, h; 8s a1y,
otz o tP T Ah g (5.11)
and
] 82M, h, ds 81y,
@ t7 P hhgm . (5.12)

Equations (5.11) and (5.12) represent the equations of motion of the
upper and lower beams respectively. From the classical thébry of pure

bending of beams, the bending moments M, and M, may be related to the
corresponding transverse displacements, y, and y, through the flexural

rigidity term EI, where E is the Young's modulus of the material of
the beam, and I is the second moment of the cross-sectional area with
respect to the centroidal axis. Noting that the y-axis is positive
downwards, from beam theory,

01y, 82y,

M =-§I Eya and M, = -E,I, I (5.13)

It should be noted that Equation (5.13) is valid for elastic,

homogeneous beams having a constant area of cross-section. It turns
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out, however, that an equation similar to the above can be written for
the composite beams of the present problem, by simply replacing the
real modulus by its complex counterpart. This analysis is valid only

for harmonic time dependence [10]. With this in mind, we can write,

Mo=-E 5 ¥ andw =-6 1, 2, (5.10)
dx? dx?

where E, = E, (1+iaw), and E, = E, (1+1fu). (5.15)

e and f are some constants to be assumed depending on the materijal,

and w is the frequency, and i = v-1. The next cbjective is to find

suitable expressions for p and s in terms of y, and y,, so that

Equations (5.11) and (5.12) can be solved.

Expression for p

As mentioned before, the adhesive layer is modeled as  a Kelvin-
Voight viscoelastic solid, because of the mathematical simp}icity. A
detailed derivation of a standard-linear model for a viscoelastic
material and its reduction to a Kelvin-Voight model is shown in

Appendix B. Accordingly, we can write,
dy, 98y, '
p=K(.Y1".Y2)+C("‘t" 'ﬁ)- - (5.18)
K refers to the transverse stiffness per unit length, and ¢ is the
viscous damping coefficient. K may be related to the storage modulus

Ec, the width b, and the thickness hC of the adhesive by, K = Ecb/hc.
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Expression for_s

The interfacial shear force s may be found by considering a small
element of the viscoelastic layer as shown in Figure 40.

The element is deformed due to the axial displacements, u; and u,

of the bonded surfaces of beams 1 and 2 respectively, caused by their
bending moments. For small displacements, the shear stress 1, is
related to shear strain in the adhesive by:

U - U, d (u- uy)

T:G{ }+7—‘—"——"0 (5'17)
c hC at hC

The expression on the right hand side excluding GC is the shear

strain. Gc is the real part of the shear modulus of the adhesive

material. As before, v 1s another constant which is included here to

fake care of the viscoelastic nature of the adhesive.

-

Assume that the axial deformations, u, and u, are caused only by

- the bending of the beams and that there are no external axial forces

in the beams. Then, from the classical theory of pure bending of

beams, it can be shown that,

hl ayl h2 -y2
5.18
h=3 ax « aMdu=-3 5% - G

(o]

ey

D"___a,r

1}43“‘0

u

Mf““
-
-

Figure 40. A Small Element of the Viscoelstic Layer
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In deriving the above expressions, it is also assumed that the neutral

axis of the upper beam always remains above that of the Tower beam.

Then,

hy 3y, 6Y2. (5.19)
2

G-V =3 3 *3 5

From Equations (5.17) and (5.19), the interfacial shear force per unit

length s is given by
GDb ay, 0Y, 9 ay, 8y,
s = 5 [ (hla—x + hg-é-i) * 75t (hla_x + hﬂé? 1. (5.20)
It 1s 1nteresf1ng to note here that for a simple harmonic time

dependence of the form, e1Wt for y, and y,, Equations (5.16) and

(5.20) can be written in a more familiar form as

p = KZ [y,-y,], and (5.21)
Gb  d d i
s = {—C- [h, H;l + b, aé’], (5.22)
“where, K. = K(1+1 ), and 6. = G, (1+ i). (5.23)

* *
Kc and GC may be considered as the complex stiffness and complex shear

modulus of the adhesive material respectively.
The next step is to obtain the final form of equations of motion
(5.11) and (5.12) by making use of the relations developed so far for

fwt

M, M, p and s. This is easily done by noting that y, = ¥, e ™", and

y, = Y, e1Wt, where Y, and Y, are now functions of x only. w is the
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complex natural frequency, the real part wp representing the damped
natural frequency and the ratio of the imaginary part Wy to wp

representing the modal loss factor n. The modal damping ratio ¢ s
simply equal to g/2. Now, from Equations (5.11), (5.14), (5.21) and
(5.22), we obtain for the upper beam:

. dtY, Gbh,  dY, dy,

*
6L g -, Mg e K () m AV =l

(5.24)
and, similarly from Equations (5.12), (5.14), (5.21) and (5.22), we

get for the lower beam:

x*
L Y,  Gibh,  dtY, @Yy .
EI g - T, [ g *ha g 1= Ko (h-Ya) - ;A = 0.

- (5.25)

Here, Y, = Y, (x) + ¥, = Y, (x).

-

Equations (5.24) and (5.25) are coupled equations of motion of the
system, the solution of which can be obtained by assuming a solution

A X xnx

of the form Y, = A.e ", and Y, = B,e .

Non-dimensionalization

The above equations of motion (5.24) and (5.25), should be
expressed in a non-dimensional form so as to avoid overflow problems

on the computer during the solution scheme. This is done in this
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section for the special case in which the two beams are assumed to be

jdentical.

Let E, = E;, = E, and h; = h, = h. The following non-dimensional

parameters are used:

yx=% 2=

h h [N
where L = £ + QC, 2 = length of the beam and QC = length of the

' (5.26)

e

adhesive Tlayer.

Also, let

E h 2

= _¢ ¥ __ € T__ 7 _._¢
G, = E. = h = L Qc T - (5.27)

c E " E ?

w

The non-dimensional natural frequency is expressed as

EI
, where o2 = — .
o 0 pAlt )

W = (5.28)

€| &

Using, Equations (5.26) through (5.28), Equations (5.24) and (5.25)

2

written in non-dimensional form are:

— =% — — -
d¢y 36 d2y dzy 12 £
_x~_c[ _1+ _2]+_ S, -V,) -V, =0, (5.29)
dx4 h Hc dx2 dx? h. h? »
and
— — — — %
d+y 3G dzy d?y 12 £
_1-_°[_1+_2]— CEW -V)-a ¥, =0, (5.30)
dx4 h Hc dx2 dx? Hc h?
_»  E.(1+ip,) G (1+ing)
Here, EC = m , and GC = —Hl"'—“h-) (5.31)
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5, may be considered as the modal loss factor of the beam material,

and 7, and g, as the modal loss factors of the adhesive material in

bending and shearing motions respectively. 5,, 7, and 5, may be

assumed suitably depending on the material, while computing the
eigenvalues and eigenvectors for each mode.
As mentioned before, Equations (5.29) and (5.30) can be decoupled
by a series solution of the form
_ A X _ A
Y, =Age , and Y, = Bn e ' (5.32)

where An and Bn are constants to be determined from the boundary

cqnditions.

Substituting Equation (5.32) in (5.29) and (5.30), we obtain,

3T, 12E, _ ]
M, Ay - —— [ N At b Bn] - [Bn—An] -w A =0 ,(5.33)
R R, h, s ,
—* =%
3G, 12k, _
4 - — 2 2 - - - =
kn Bn [ A% Ay * kn Bn] - [Bn An] w2 Bn 0 (5.34)
hh hc h3
c
The above equations written in a matrix form:
- _ L g -
0;- qx%+-g - w?) -(C, +C,) A,
-(C,+ C,) (M = C X +Cy - w?) B, (5.35)
L 1L 1
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3G
where, ¢, = — , C; = <, (5.36)
he

(@ I 3

pon 3 |
1
pg |
Y

For a non-trivial solution, the determinant of the above matrix set

equal to zero yields eight roots of X, i.e.,
(M- Cx2+ ¢ - @) - (G +G) = o. (5.37)
This can be simplified as
(M -G +2C +C - w) =0 (5.38)
and

(- CM -w? -C)=0. (5.39)

Equations (5.38) and (5.39) each yield four unique roots for A.

Furthermore, from the above matrix, the constants An and Bn are

related by: ' )

where,

GG - Zﬂ]
#n R '

(5.40)

Finally, we have

V=) A e, (5.41)

and
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=1 A e - (5.42)

Equations (5.41) and (5.42) now have only eight constants to be
determined by applying the boundary and continuity conditions as

described later in this chapter.

Analysis of Parts 2 and 3

The differential equations of motion for the transverse vibration

of the beam portions of the system as shown in Figure 38 are:

0% Yp+ 0%y, .
bj _ =
D; 0x} * PjAj 3t2 0. Jj =12 (5.43)

For the special case of identical beams,
D, =Dy = E*I, and pA; = paAy = pA.

Assuming Ypy = ij(x) eiwt, j=1,2, Equation (5.43) becomes

d4yY PA
b
TR 1. ) w Yy = 00 d = L2, (5.44)

In non-dimensional form,

d‘Yb.

w4
dxj

- uw? ij =0, j=12. (5.45)

The solutions of the above equations are obtained, as before by

assuming a series solution of the form:
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- px
Voq =1L c, e , and Y, =1§1 D oe" (5.46)

where ﬁ; = w? , and Cn and Dn are constants to be found from the

boundary conditions.

Equations (5.41), (5.42), and (5.46) have 16 unknown constants. The
following boundary and continuity conditions are applied to determine

those constants and to obtain the frequency equation.

Boundary Conditions
Considering simply-supported boundaries at the un-jointed ends of
the two beams, at points 1 and 2 (see Figure 41 ), the transverse

displacement and bending moment are zero.

Al

N | a4
T
Ybl 1 XA
3Ly }_4 2
Yo §00¢
2 Yy

Figure 41. Illustration of the Locations of Boundary and Continuity
Conditions
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i.e., a) at x, =0, Y ; =0, and

d?y
V.. =0, and —2%=0. @ (5.48)
dx2

1
&l
-] -
o
N
1

b) at X, =

Next, points 3 and 4 are free ends. Hencg, the bending moments there
are zero. Furthermore, the shear force at these points can be

obtained from Equation (5.22). Hence, we obtain,

¢) at X = 0 (point 3),
— — % ... —_
. a2y dsY 6. dY, dY
2 20, and —— = =5 [ =1, (5.49)
dx2 dx3 h2 dx dx
d) at X = EC (point 4), -
—_ — % —_ —_
d2y a3V 66. dY, dY
g, ad —— =S [ —+—1]. (5.50)
dx? dx3 h2 dx dx

Continuity Conditions
Referring to Figure 41, at po%nts A and B, we equate the
displacements, slopes, bending moments, and shear forces for thé two
hypothetical sections of the beams. These are mathematically

expressed as:



At X, = £ and X

b1
a _ dfy
X dx,
AN
dx? dx?
BV, @y
dx3 dx3

Yo = Yhp
M,
dx  dx,
2y, d*V,
dx? dx2
@Y, @7,
dx3 dx3

121

0 (point A),

(5.51)

(5.52)
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Equations (5.47) through (5.52) yfeld 16 equations containing the 16
unknowns, viz., Ay, Agy o o - Rgy G G o o o Gy and Dy Dy . e D, -

These equations can be expressed in matrix form as:

-y oo -—

- A,

16 x 16 A,
complex matrix C, =0 . (5.53)

D .

The elements dij of the matrix D can be written in groups as follows:

1)d., =0 for 1=1...4andj=1...8

iJ

]
st
(&% )
L]

.

1,2 and j . 16

—dn
1l

= 3,4 and ] . 12

-la
{
1
(Vo]
.
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1=5...8 and j =9 ... 16

=29 e 12 and j =13 ...
i=13...16 and j =9 ...
2) dij =1 for 1 =1 and j =9 ... 12
for 1 =9 and j=1...8
d,; = -1 for 1 =13 and j =13 ... 16

13

3} dzj = p§_8 for J-= 9 ... 12

Bi 1,2
a) d3j=e312 for j =13 ... 16
5) d4j =12 d3j for j =13 ... 16
s = -2' .'= s o0
6) dSJ ¢JAJ for j =1 8
.
6GC
= .3."'—" . s i =
7) d6j [¢J>\J = (1+¢J)XJ] forj=1...8

16

12



8) d

9) dg.

10)

11)

12)

13)

14)

15)

16)

73

13]

14

15§

16

A, for

k% for

k} for

= A.d

Ay dy3

ed ©d

J

6J
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(1 + ¢j)xj]ekaé for j=1...8
jJ=1...8
j=1...8
j=1...8

for j=1...8

for j=1...8



¢

EES

125

17) dgy = - epj‘Sz for j=9...12
18) lej = ﬂj_gdgj for J =9 ...12
19) dllj = ﬁ3—8d9j for j=9...12
20) dipj = ﬁ}-sdgj for =9 ...12
21) d14j = - ﬂj—lz for j =13 ... 16

32) d15j = - 53-12 for j =13 ,.. 16

23) d16j = - ﬂ3-12 for j =13 ... 16 P

The determinant of the above matrix D, set equal to zero gives the
frequency equation, 1.e., for a non-trivial solution,

Det [0] 14416 = O (5.54)

The roots of Equation (5.54) yield the complex natural frequencies

(wns) of the system.

wnj = URJ + i ij,

where j =1, 2, . . . represents the mode number.



¢

e

126
ugy = modal resonance frequency, and
p. = — = modal loss factor.

J ij

Once the eigenvalues are evajuated, the corresponding eigenvectors
needed to plot the mode shapes can be found by using any 15 of

Equations (5.53) with one arbitrary constant.

Solution Procedure

The solution of Equation (5.54) was obtained numerically on a computer
using an iteration method. A computer program has been developed on a
Harris 800 system to obtain numerical solutions.

The complex eigenvalues (wR + i ”1) are solutions of the complex

equation’
D (g + 1ug) + 1 D; (g + 1w =0, : (5.55)

where DR and DI are the real and imaginary parts of the determinant of

the matrix D. The inputs to the program are the material constants

and relevant geometric quantities expressed in non-dimensional forms,

namely, h, hor Eco G.o 714 M and 7, . The solution procedure is as
follows: Choose some initial value of w, and compute the roots of ﬁa =

w?, and also find all of the An by solving Equations (5.38) and

(5.39). Construct the 16x16 complex D matrix and check to see whether
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Equation (5.55) is satisfied. If not increment w and repeat the
entire process till a zero crossing for the value of the determinant D

is obtained.
The solution for the undamped system (i.e., DR(wR) = 0) is a good

starting point for numerical iteration. This solution can later be

used as an approximate solution for, DR(uR+1O) + 1 Di(UR + {0) = 0,

and jteration is carried out by a bracketing methed to arrive at the

complex eigenvalue.

Numerical Results and Discussion
The length and thickness of the graphite epoxy heams chosen here
for study were: £ = 12.25 cm and h = 0.25 cm. The storage modulus of
the beam material as supplied by the manufacturer was 124 Gpa. The

material loss factor of the beam was taken as p, = 0.004; which was

assumed to be a constant for all the modes. This corresponds to a
damping ratio of 6.2% and is believed to represent closely the
material damping of the graphite epoxy material as found from various
experiments described previously in Chapter 3. The thickness of the
adhesive layer was taken as 0.5 cm. The complex modulus of the
adhesive material, which is epoxy resin in the present case was
assumed to be 4(1+i0.04) Gpa which has a real part of 4 Gpa as
supplied by the manufacturer. The complex shear modulus of the

adhesive is assumed to be 1.4(1+i0.04) Gpa. Here g, = g, = 0.04,
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which corresponds to a constant damping ratio of 2% for the epoxy
material.

The above quantities expressed in non-dimensional form were used
in the numerical computation of the eigenvalues and eigenvectors. The
ratio of the length of overlap to the beam length is called the
overlap ratio. The Numerical results were obtained for overlap ratios
of 0.2, 0.4, 0.6, and 0.8. Figure 42 shows the variation of natural
frequency with overlap ratio for the first three modes of vibration.
From this plot, it is clear that the natural frequency of the system
increases with an increase in the overlap ratio for all modes. Figure
43 is a similar plot showing the variation of the system damping

(total loss factor of the system) with overlap ratio. For the case of

overlap ratio = 0.2, the non-dimensional frequencies w are: 2.86,
15.12, and 27.24 for the first three modes. The corresponding system
damping ratios are ¢;, = 0.534%, ¢, = 0.120%, and ¢ = 0.054%. It

should be noted that the above values were obtained by assuming
constant values of 0.2% and 2.0% for the material damping of the beam
and the adhesive respectively. It is seen that, for this case, the
system damping is higher than the material damping of the beam only
for the first mode. For the other two modes, the system damping ratio
appears to be lower than the material damping of the beam. This
observation, however, is true only for the above case and cannot be
generalized. To substantiate this point, Tet us consider a different

case in which the damping ratio of the adhesive was assumed to be 5%,
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and the material damping of the beam was kept the same. The system

damping ratios computed for this case are: ¢ = 1.66%, ¢ = 0.33%, and
¢y = 0.16%. There were no significant charges in the natural

frequencies of the system. As can be seen, the system damping ratios
in this case are totally different from the previous case considered.
Hence, in order to predict the system damping ratios, using the
present model, accurate knowledge about the material damping ratios
(of the beam and adhesive) and their dependence on frequency fis
mandatory.

Figures 44 through 46 show the predicted mode shapes of the first
three bending modes for different overlap ratios. These were obtained
by solving the homogeneous algebraic Equations (5.53) for each

eigenvalue.
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Figure 44. Theoretical Mode Shapes For Mode 1



¢

133

72

0.4

NN

0.6

N

0.8
Figure 45. Theoretical Mcde Shapes for Mode 2

\



¢

¢

¢

@\

Figure 46.

0.4

0.6

0.8

Theoretical Mode Shapes for Mode 3



¢

135

Comparison with Experimental Results

Table 5 shows both theoretical and experimental results of two
graphite epoxy lap joint systems with overlap ratios of 0.2 and 0.5.
A1l of the theoretical results were generated by considering simply-

supported boundary conditions at the ends.

| Table 5

Comparison of Theoretical and Experimental Results of the
Graphite Epoxy Lap Joint Systems

Natural Frequency(Hz) Damping Ratio(%)

Overlap Mode NO. -----=mmmmm o e e oo
Ratio Theory1 Expt} %Error Theory1 Expt% Expt?
1 195.9 207.0 5 ©0.53 1.51  0.20

0.2 2 898.5 986.2 9 0.12 1.63 0.16

3 1864.5 1984.0 6 0.05 2.29 0.10

1 263.5 270.6 3 0.13 0.68 0.43

0.4 2 1148.4 1075.5 -6 0.15 1.43 0.12

3 2492.7 2684.4 7 0.20 0.83 0.15

1Using Simply-Supported boundary conditions

2Using Free Free boundary conditions.
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The specimens were prepared by bonding two similar graphite epoxy
beams over the desired length of overlap using an epoxy adhesive. The
epoxy resin was procured from CIBA-GEIGY Corporation. Much care was
taken to obtain a good bond by properly curing the joint system in an
oven. The dimensions of the unbonded beams were: length = 12.25 cm,
width = 2.8 cm, and thickness = 0.25 cm. These dimensions and the
material constants (Young's Modulus and Shear Modulus) were input to
the computer program to predict the theoretical natural frequencies,
modal damping ratios and mode shapes.

The supports to simulate simply-supported boundarie; at the ends
were specially fabricated in the form of two separate triangular
blocks with a knife edge on each, to support the beam, one from the
tép, and the other from the bottom. The two blocks were then clamped
to a rigid base. In order to evaluate the experimental simulation of

these supports, a trial test was first conducted on an aluminum beam.

Excellent agreement was obtained between the theoretical natural

frequencies (computed using simply-supported boundary conditions)
andmeasured values. In fact, the percentage difference between the
two results never exceeded 2% for the first four modes. Having
established the validity of the above text fixtures, experiments were
later conducted on graphite epoxy lap-jointed beams. An impact hammer
with an attached force transducer was used for exciting the specimen
and the response was measured using a mini-accelerometer (Bruel &
Kjaer 4375). The frequency response (ratio of acceleration to force

signals) was immediately computed and recorded on an FFT analyzer

-~
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(Bruel & Kjaer 2032). The modal parameters were then computed using
the Structural Measurement Systems (SMS) modal analysis software.
Referring to Table 5 it 1s seen that there is good agreement
between the predicted values of natural frequencies and experimental
data. The percentage difference between the two results is in the
range of 3 to 9%. The measured damping ratio values in column 7
(Table 5) are larger than the predicted values. This is presumably
due to additional damping contributions at the end supports in the
experimental data. In order to substantiate this, damping
measurements were made on the same samples without the end fixtures.
Column 8 of Table 5 shows these results. In this case, testing was
done by simply mounting the sample directly on a shaker using a thin

layer of wax. The resonance frequencies in this case were, of course,

" somewhat different from those obtained previously using the simply-

supported boundary conditions. It 1s interesting to ﬁot1ce, however,
that the predicted damping values in column 6 and the measured data in
column 8 are of the same order. Next, theoretical mode shape is
compared with experimental mode shape in Figures 47 for mode 1. Note
that no attempt has been made to normalize the different amplitudes in
the theoretical and experimental results. There is excellent
agreement between the two mode shapes for the first mode as seen in
Figure 47. The small discrepancies in the two results can be
attributed to several assumptions made in the theoretical analysis.
The major assumption is the use of a constant value with frequency of

vibration for the modulus of the beam material. Also, in the
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theoretical model it was assumed that the adhesive is flexible and
that the damping is caused by both shering and transverse motions of
the adhesive. In practice, however, it is very difficult to fabricate

specimens to satisfy exactly the above requirements.
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Theory
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Figure 47.
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Comparison of Theoretical and Experimental Mode Shapes for
Overlap Ratio = 0.2, Mode 1
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Experimental Study of Damping of Bonded
Double-Butt Joint Specimens

This section contains the results of experiments conducted on
beam and jointed specimens in a vacuum chamber. Damping measurements
were made on the following ten graphite epoXxy samples which were

procured from Sikorski Aircraft Company:

i) Five identical graphite epoxy beam specimens with a double-butt
joint in the middle as shown in Figure 48 and i) Five jdentical

graphite epoxy beam specimens of dimensions as in 1 but with no

Jeints.

All dimensions in cm.

Figure 48. Double-Butt-Jointed Specimen
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In each of the above experiments, the specimen was mounted at its
center directly on the shaker using a thin layer of wax. This closely
simulated free-free boundary conditions at the edges. Only odd
numbered modes were excited, since the specimen was mounted at the
center, which happens to be a node point for all even numbered modes
for free-free boundary conditions. A1l the damping measurements were
made using the usual improved half-power points method.

First, measurements were made on the double-butt-jointed (DBJ)
specimens. In each case, the specimen with the shaker was kept inside
the vacuum chamber and damping ratios and resonance frequencies were
measured for the first and third mode of vibration, before the air was
pumped out. Then the measurehents were repeated in a vacuum when the
pfessure inside the chamber was about 0.1 mm of Hg. The test
temperature remained ambient in both cases. Table 6 shows a summary
of results for the five DBJ specimens tested under vacuum ¢onditions.
No significant change in the values of the damping ratio was noticed
between the experiments conducted under normal atmospheric pressure
and in a vacuum. This difference in the values of the damping ratio
was in fact in the range of 0.01-0.02% during most of the trials.

From Table 6, it is seen that the average value for the damping
ratio of the DBJ specimen for the first mode is 0.114% and that for
the third mode is 0.155%. VThe small discrepancies in the values of
the'resonance frequencies in the five samples could be attributed to
a) slight differences in their dimension and/or b) slight differences

in the exact location of the excitation point during mounting.
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The next set of experiments was conducteq on the five beam
specimens with no joints (having the same dimensions as the DBJ
samples) under identical environmental conditions as maintained with
the DBJ specimens. The results are tabulated in Table 7. Here, it is
seen that the beam has an average value for the damping ratio of
0.107% for the first mode and 0.138% for the third mode.

By comparing the results of Table 6 and 7, it is seen tﬁat,
although the damping ratio values for the jointed specimens appear
somewhat higher than those of the beam specihens, this difference 1is
very small. This observation is also true for the previous damping
results of lap-jointed specimens with free-free boundary conditions.

Much care was exercised in maintaining identical environmental
aﬁd other conditions in all of the above experiments. The damping
measurements were made precisely by zooming in on each mode thus
increasing the frequency resolution of the analyzer and minimizing the
influence of external noise. Figure 49 is a plot of the frequency
response data for a DBJ specimen for baseband excitation in the
frequency range 0-1.6 kHz. The corresponding zoom frequency response
plots for modes 1 and 3 are shown in Figures 50 and 51 respectively.
Figures 52 through 54 show similar baseband and zoom frequency

response plots for a beam sample.
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Table 6

Experimental Results of Double-Butt-Jointed Specimens

Samplie No. Mode 1 Mode 3
féHz) gn(%) fn(Hz) gn(%)
1 258.2 0.11 1371.2 0.14
2 257.0 0.10 1375.9 0.13
3 260.0 0.13 1381.7  0.17
4 256.3 0.10 1368.5 0.17
5 261.3 0.12 1380.1 0.16
Average 258.6 0.11 1375.5  0.15
Table 7

Experimental Results of Beam Specimens with No Joints

Sample No. Mode 1 Mode 3 g
féHz) gh(%) fn(Hz) gn(%)
1 341.1  0.11 1860.0 0.15
2 337.3  0.13 1782.2  0.15
3 340.5 0.11 1794.3  0.12
4 330.4 0.11 1749.2 0.12
5 334.5 0.10 1769.0 0.15

Average 336.8 0.11 1778.9 0.14
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Figure 49. Frequency Response Plot of the Double-Butt-Jointed
Specimen Using Baseband Analysis
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Figure 50. Frequency Response Plot of the Double-Butt-Jointed
Specimen Using Zoom Analysis for Mode 1
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Figure 51. Frequency Response Plot of the Double-Butt-Jointed
Specimen Using Zoom Analysis for Mode 3
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Figure 53. Frequency Response Plot of the Beam Specimen Using
Zoom Analysis for Mode 1
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Figure 54. Frequency Response Plot of the Beam Specimen Using
Zoom Analysis for Mode 3
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VI. SUMMARY AND CONCLUSIONS

In this project an attempt has been made to evaluate the dcrplng

capacity of graphite epoxy materials and structural jo1nts The B

project Wwas sponsored by the NASA George C. Marshall Space Flight

Center, Huntsville, Alabama under contract No. NAS8-36146. The work

_involved a systematic investigation of the damping ratio of different 777

composite specimens and bonded jointggﬁnder normal atmospheric . -

conditions and in a vacuum environment. Free and forced vibration test

methods were employed for measuring the damping ratfos. The effect of

edge support conditions on the damping value of a composite tube
§pecimen was studied by using a series of experiments performed on the
sbecimen with different edge supports. It was finally.found that
simulating a free-free boundafy conditions by having no constraints at
the ends gives the lowest value of the material dampi;g of the
composite. The accuracy of the estimation of the damping ratio value
was improved by using a curve-fitting technique on the response data
obtained through measurement.

The effect of outgassing (moisture desorption) on the damping
capacity was determined by measuring the damping ratio of the tube
specimen in a vacuum environment before and after outgassing had
occurred. The effects of high and low temperatures on the damping was

also investigated by using a series of experiments on tube and beam

specimens. Special experimental set-ups were developed to accomplish

146



(

- (C

¢

€

147

this objectives An analytical model to study the vibrations of a
bonded lap joint system was formulated. Numerical results were
generated for different overlap ratios of the system. These were
compared with experimen£31 results.

In order to determine the influence of bonded joints on the
material damping capacity, experiments were conducted on bonded lap-
jointed and double-butt-jointed specimens. These experimental results

were compared with simple beam specimens with no joints.f _

|

The following conclusions may be drawn from the results of this
investigation.

1) The damping ratio value is strongly dependent on the end support
conditions used to support the specimens. It was observed that
the end fixtures usually offer a large contribution to the damping
capacity of the material.

2) The material damping ratio value of the composite tube 1s in the
range of 0.1% - 0.15% for a frequency range of 500 Hz to 560 Hz
under normal atmospheric conditions. The first bending mode of
the specimen occurs in this frequency range. The damping ratio
value seems to increase with higher modes and has a value of about
0.36% for a modal frequency of about 2840 Hz.

3) From the experiments conducted on the tube specimen in a vaéuum,
it may be concluded that the contribution of air damping to the
material damping is between about 0.03% and 0.04%. The material

damping ratio of the tube specimen in a vacuum is thus in the

range of 0.06% and 0.11%. The effect of outgassing or moisture
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desorption on the damping ratio value of the specimen is not very
significant. The change in damping ratio value due to outgassing
of the tube specimen for a period of about one month was observed
to be 0.016%. The percentage change in the weight of the tube
from its original weight was 0.9%. No significant change in the
damping ratio with the vacuum pressure inside the chamber was
observed.

It is observed that changes in temperature have a significant
influence on the damping capacity of the composite materjal. From
the experiments conducted on tube and beam specimens, it is
observed that the damping of the material increases with
temperatures above the atmospheric temperature and has a value of
about 3% near the matertal glass transition temperature. There
is, however, a small decreasing trend in the values of the damping
with temperatures below the normal atmospheric temperafﬁre. This
is in agreement with the data available in the literature on other
types of composite materials.

The ana1ytical model described in Chapter 4 can be used to predict
the natural frequencies and the modes shapes of a bonded lap joint
system for free vibration. The model can also be used to predict
the system modal damping values by properly chocosing the material
damping values of the beam and the adhesive. Good agreement
between numerical and experimental results for the modal

frequencies and mode shapes was obtained. The percentage
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differrence between the values of the theoretical and experimental
natural frequencies is in the range of 3 to 9%.

From the numerical and experimental results obtained on lap-
jointed beams, it is clear that the natural frequencies of the
system increase with an increase in the length of overlap.

The increase in the value of the damping ratio due to the presence

of bonded joints in the system does not appear to be very

significant.
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VII. RECOMMENDATIONS FOR FUTURE WORK

The material damping of the graphite epoxy specimens determined
so far appears to be very lTow. This low value of damping may result
in a significant truss system displacement amplitude of the telescope
truss system, which, in turn may lead to a blurring of the optical
system image. The total truss system damping, of course, will be be
slightly higher because of the effect of the joints. But the precise
effects of the bonded joints on the system damping is not known.
Unbonded joints are known to provide significant contributions to the
damping. More work is thus needed in this area to determine if the
bonded joints can be relied on to increase the value of damping. Thfs
wérk should include both analytical and experimental work on other
types of joints as encountered in space structures. Some'of these
Joints are tubular joints, bolted joints etc. Typical conf%gurations
of tubular joints are shown in Figure 55.

Another area which needs attention is the dependence of damping
with frequency. The material damping at very low frequencies must be
determined since many large space structures are found to possess very
Tow fundamental resonance frequencies which are generally less than
about 10 Hz. The dependence of damping with displacement amplitude is
also important when the system vibrates at such lTow frequencies.

The study on the effect of moisture content on the damping

capacity of these materials is not complete in many aspects. The

150
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moisture absorption and desorption capacity of these materials is not
well known. The percentage moisture content of the material with
respect to time, and the exact glass transition temperature need to be
determined. The moisture absorption capacity of these materials is
expected to be different if the material is soaked in water or exposed
to humid air. These two approaches are expected to produce entirely
different results. It is thus important to examine both the
approaches in the future to determine the exact influence of moisture
absorption and desorption on the damping capacity of these materials.
Work is also needed in the prediction of damping of the graphite
epoxy material. Some work has been done by other investigators in
predibting the damping of laminated composite plates using a finite

element approach. There is a considerable scope for research in this

area.
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APPENDIX A
ILLUSTRATION OF THE CURVE-FITTING TECHNIQUE
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TLLUSTRATION OF THE CURVE-FITTING TECHNIQUE

The half-power points method of estimation of the damping ratio is
not always accurate. It relies on how well one can read the frequency
values for the half-power points from the frequency response data. It
is seldom possible to estimate the half-power points without making any
interpolation in the frequency values. The curve-fitting technique
described in Chapter 2 can be used to overcome the above problem with
the half-power points method. In the curve-fitting method, the entire
data near a resonance are used for the estimation of the damping ratio,
as opposed to three points in the half-power points method. Thus, 2
mc'n”e sccurate estimation of the damping ratio can be obtained. This
method has been found to be eépeciaﬂ_y well-suited and mor;a accurate
than the half-power points method for the case in which t;e' frequency
response curve is contaminated with noise. £

In the present illustration, the damping ratio of the tube specimen
was estimated by both the methods and the results are compared. In the
curve-fitting technique, all three quantities, namely, the magnitude,
the real part, and the imaginary part of the receptance function were
utilized separately to estimate the damping ratio value. Figufé 56
shows a comparison of the plots for the magnitude of the frequency
res-ponse function obtained from both the measurement and the curve-
fitting algorithm. Figures 57 and 58 show similar plots for the real

part and the imaginary part of the frequency response function. All
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these data are for the tube specimen with a half ring as the connecting
element. It may be recalled that the damping ratio value for the data
using the half-power points method is 0.130% and the resonance
frequency is 552.50 Hz. Now, using the curve-fitted response the
damping ratio is estimated to be 0.128% and the resonance frequency ic
he 551.45 Hz. From the real part of the receptance curve using the
curve-fitting method éhe damping ratio value is estimated to be 0.129%
and the resonance freguency to be 551.36 Hz. From the imaginary part ot
the frequency response function and the curve-fitting method the
damping ratio value is found to he 0.121% and the resonance frequency
is 551.63Hz. A1l of the above results are summarized in Table 8. It
is clear that there is excellent agreement in the results from the
different approaches used.

In the present illustration the measured frequency response curve
is close to an 'ideal' response plot of a single degree-éf freedom
system. It shows a well-defined peak and the frequency range "chosen is
small. It was thus possible to easily locate the resonance frequencies
and the half-power points. Hence, the damping ratio estimated from the
half-power points agrees well with that of the curve-fitting method.
But, in cases where the frequency response curve is not so ‘'ideal’ as
in the present case, it is always advantageous to estimate the daﬁping

ratio value using the curve-fitting method than the half-power points

method.
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Table 8

Comparison of Damping Data from Different Estimation Methods

Curve-fitting data

Measured data

From magnitude

From real part from imaginary From half-

plot of plot of part plot of power points
receptance receptance receptance method
Damping
ratio 0.128% 0.129% 0.121% 0.130%
Resonance
551.36 551.63 551.50

frequency  551.45
(Hz)
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APPENDIX B
EQUATION OF MOTION OF STANDARD LINEAR
SOLID MODEL
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EQUATION OF MOTION OF STANDARD LINEAR SOLID MODEL
The standard linear solid model is shown in Figureb59 (a). 1t

consists of a series combination of an elastic spring K, and viscous

dashpot ¢, connected in parallel with another elastic spring K. When

K, approaches infinity, the standard model reduces to the welJ-known

Kelvin-Voight model as shown in Figure 59(b). 1In the other special
case, when K is identically zero, the standard model reduces to the
Maxwell model. The equation of motion for the standard linear model is

developed as follows.

Let P, and P, be the forces in springs K, and K, such that
P="P +PF . (81)
Referring to Figure 59(a), Let y, be the disp]acementmgf the node

P

connecting K, and c. The forces P, and P, are given by

P K, (v;-y5). and (B2)

P,

K o(-y) - . (83)

Differentiating Equation (B2) w.r.t. time t, we get,

aPl a.Y1 a.‘/3 :

T Ki (at— - 3T (B4)
The force in the dashpot is,

dy oy
Lo ()
Pp=C 5t "5t (85)
From Equations (B4) and (B5),
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Substituting for P, and iﬁi from Equation (B3), we obtain,”

ot

ay, ay, 1 ©oP oy, 3y,

st -s -k lat - KGE -8t

Rearranging,

4

This is the equation for the general linear solid model.

1
)1+ 2 [P - Ky -va))s

1 p 3y, K
xaetc’ (5{ - 3t 1+ Kl] +Z (Y1~ ¥2) -

(86)

(87)

(88)

(8S)

(810)

(811)

In the 1imit

when K, approaches infinity, the standard linear solid model becomes

the Kelvin-Voight model as shown in Figure59 (b). Taking the 1imit of

Equation (B11) as K approaches infinity, we get

oy 3y
P=c (37 - 3¢ ) + K (v,-¥1)-

(812)
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(a) Standard Linear Model (b) Kelvin-Voight
Hodel

Figure 59. Visccelastic Models
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(c) Maxwell Mcdel
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VITI. IMPROVEMENTS IN DAMPING MEASUREMENTS

In this chapter some improvements that have been considered in making
accurate damping measurements are discussed. Since our main aim s to measure
the damping of the graphite epoxy material, the damping from the supports of
the specimen and other damping, such as that from the connecting cables and ’
surrounding air are to be avoided. As discussed in the previous chapters, the
best way to avoid damping from supports is to use a free-free support
condition for the beam and excite it at its center through an impedance head
mounted on a shaker. The input force signal to the beam and the output
acceleration signal from it are fed through two charge amplifiers to the Dual
Channel Signal Analyzer. Then the frequency response either inertance A/F,

mobility V/F or receptance Y/F is obtained.

Preliminary Check of the Measured Results

The accuracy of the measured results may be evaluated from an observation

of the frequency response curve and the measured resonance frequency by

. comparing them with the values obtained by theoretical analysis.
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The Shape of Frequency Response Curve

A mathematical analysis is described herein which would help in
predicting the frequency response curve for simple beams studied (the beams
without joints).

For a simple beam with material and air damping as mentioned above, its

displacement y can be obtained by superposition of displacements y.

corresponding to its infinite normal modes of vibration Xi(x).

yiat) =L y; =

, ¢:(t) X;(x) (8.1)
i=0

18

=0

where normalized displacement function [121, 122]
Xo(X) = 1 (rigid-body mode) (8.2)
A

and

L) = b [(eoshyx + cosba) - oy sinholx + sind
5 (x /] [ coshy=x + cos—yx) - o;(sinh—x s1n—Tx)] -

coshki _ coski

-

’ (8.3)

(i=123...» g = sinhki - sinxi)

are the solutions for the differential equation (8.4) with boundary conditions

as given in Eq. (8.5).

04 92
EI# + pAé—t-} =0 (8.4)
0? _ 02 _
axﬂlx=0 - 6x21x=1 =0
8.5
oy =&Y -0 -
ax31x=0 = ax3!x=1



According to W.E. Baker et al [123], for a beam with material and air
damping and with small amplitude vibration, its differential equation of
motion for free vibration analysis is

e O+ per Sl v T H 0y -0 (8.6)

sxiot T 1ot T et
Where the meaning of g can be found from Eq. (5.15) of this report. From Egs.
(8.1) and (8.3), Xi(x) can be separated from Eq. (8.6) and the differential

equation for the time function ¢1(t) (i#0) is obtained.

.. . 2 .
¢1 + Zai ¢i + W ¢i = 0 (i#0) (8.7)
where
2 A EL
Wi T ( 1) pA (8.8)
2 C -
Zai = wiﬁE + EKT (8.9)

By using the principle that the total virtual work should ke zero, an equation
similar to Eq. (8.7) can be written for a free-free beam with damping,

supporting and exciting conditions as mentioned above. -

F
- 1 o . :
g+ 20.6; + wy $; = A Xi(i)coswt + ngi(%) (i#0) 2 (8.10)

where F,coswt is the exciting force and g is the acceleration due to gravity.

However, for the rigid-body mode, the differential equation is

0%y, 0¥,
pA1 at2 = Focosut - C ¢ (8.11)

because there is no elastic force applied on the beam. From Eq. (8.1i) the

differential equation for ¢, is written as

v . FO FO
$o + ag = coswt =
pATX, pAV]

coswt, (8.12)
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where

C
a = g7 - (8.13)

Y

According to S. Timoshenko et al [122], the solution with the initial

conditions
Ylgeg = 0
8.14
v (8.14)
at't=0
for Eqs. (8.12) and (8.10) are respectively as follows
F -at
° cos (wt+y) e
$o(t) = - 7 + ' (8.15)
pAVI [ wV(w2+a2) w2+a2]

| .
FOXi(g)cos(wL—ei)

1 Yi -a.t
$.(t) = Lax. ()1 - = %" cos(u t-1,)] + :
i wi i‘2 [ Wy d” i ] pAJ[(wi—w2)2+(2aiw)2]

1, -a.t
FoX:(5)e 71 a.
SR RS r [(0h-u" Yeoswgt + (wiu )Lsinwgt] (i20) (8.16)
pA[(wi—w ) +(2aiw) ] d

where
¢=tan'1(%)., ’ (8.17)
-1,%
7i=tan (E—) (i#0), (8.18)
d
-1 200
61= tan™ " (——=) (i#0), (8.16)
W: - ,
1 .
and
_ 2 2 ‘40
Wy = V(wi—ai) (i#0). (8.20)
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Since Xi(% =0 (i=2,4.6,...»), for the center of the beam, the displacement

and the steady-state displacement of the above beam are as follows

s o]

Y = g (D)X + Lo 8 (X, (3) (8.21)
and
1 Fo cos(wt+w) °X%(%)C°S(“t‘9')
yGit) = - om (&K )+ —— )} (8.22)
wJ(w . ) 1 1,3,5 u; AJ[(wi— w) o+ (Zaiw) ]

Where the first term fs the displacement for the rigid-body mcde due to the
exciting force, and after the summation sign the first term is the static
displacement due to gravity and support, and the last term is the steady-state ’
displacement due to the exciting force,

The corresponding velocity and acceleration at the center of the beam are

written as

2 ] .
s1n(wt+¢) 1X; (Glusin{ut-6,) } (8.23)

VWt a) T=L,3,5.. V[(Wiu) +(2a50) "]

1
syt - pM{

1X§(%)w2cos(wt49i)

a2 w : ®
y( 1) = cos(wt+y) - J_ (8.24)
6y2 2 pA] {\/(U + aﬂ) 1—1,3,5... \/[(W?‘W).‘,*‘ (2&101)2]}
By expressing Egs. (8.23) and (8.24) in the complex form we have
JY 21 =38
gf Y(%'t) - F;] {e 7 2. E ]XiEZ)f 2e ] 7 ej(wt—%) (8.25)
PAL N+ ) T=1,3,5. V[ (wy-w )+ (2a50) ] ;

2.1y 2 -6,
?i~ ( g - Fo oJY % 1Xi(2)w e Y7 Sut (8.26)
7 21 pAT { - 2 7.2 2 } € .
dy V@) 11,35 V(e - w) ¢+ (2050) ]
or
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7 -1 Ao
3 1 Fo 2 jlwt - 5 + tan =)
= — [+]
0 V(1) = oy VG + Bo)e
-1 Ao
62 1 Fow . . J(wt + tan E—)
gt_z Y(th) = p_A]_‘/(Ao + Bo)e
where
2 ]
A cos _ E 1X1(§)w c0§91
- 2 2 2.2 2
viw +a ) 1=1,3,5 ¢[(w1 -w ) *+ (Zaiw) ]
1 Q) si
5, - S, ¥ j(F)u singy
o 2 2 2 2.2 2
v ¥+a ) i=1,3,5 ..\/[(wi -u) o+ (2050) ]
or
2 ] 2 2
. - w E X (3w (wy - w )
o ~ 2 2 2 2. 2 2
w +a i=1,3,5 (wi-w )+ (Zaiw)

a o]
Bo = 7% * Z
W *a i=

2
1%, (%)w(Zaiw)

1,3,5...(w§ - wﬂ)i + (2a1.w)2

(8.27)

(8.28)

(8.29)

(8.30)

(8.31)

(8.32)

Then the magnitude of the frequency response, the mobility and inertance are

respectively as follows:

and
A 2
IF°I R ot
where
M=pAl

1 @ 1 1 2 2
h:': - .Y(_Z'!t)l = ﬁ ‘/(Ao + Bo)

2 2
L2yt = B v + B

(8.33)

(8.34)

(8.35)



¢

Figs. 60 and 61 respectively show the theoretical frequency response
(mobility and inertance) of a graphite epoxy beam with the following

parameters.

1 = 2.54x10 Im (Tength of beam)

b = 2.84x107°m (width of beam)

h = 2.65x10 °m (thickness of beam)

E = 1.2x10'' Pa (storage modulus of elasticity for graphite epoxy)
p = 1.6x103kg/m3 (density of graphite epoxy)

¢ = 0.001 (damping ratio of beam)

a=uwc

a; = ;g (i#0)
When plotting these frequency response curves from Eqs. (8.33) and (8.34),
only four leading odd modes of vibration were used in Egs. (8.31) and (8.32).

By comparing the ‘experimental frequency response of the mobility and
inertance shown in Figs. 62 and 63 with the theoretical ones showp in Figs. 60
and 61 respectively, it is possible to estimate the accuracy offthe measured
results. Otherwise, if there are significant variations betwéen the two
curves, it is better to check the problem before the next measurements are

made.
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The Skeleton of Mobility Plot [25]

For a structure more complicated than a simple beam, it is difficult to
predict its frequency response. Therefore, the utility of observing the shape
of the frequency response curve is limited. Another technique used for
checking the measured results is called skeleton check and is shown in Fig.
62. It is suitable for any structure with free-free support condition, and it
should be used for the frequency response curves which are plotted in
logarithmic scales. If there is a tendency that the =6dB/Oct straight Tines
go down with an increase in frequency, the measured results may be all right.

We can find our results to agree very well with this method of checking.
The Accuracy of the Resonance Frequency

For a lightly damped simple beam it is easy to predict-its natural
frequency. Hence, a good agréement of the measured resonance frequencies with
the predicted natural. frequencies also indicates a good mé;suéement.
Obviously if the measured resonance frequencies are found to be lower than the

calculated ones there must be a load effecting the beam vibration.

Improving the Mounting of Beams

It is found that the mounting of the beam specimens under test play an
important role in damping measurements. Hence time and effort has been spent
for selecting the best mounting method. The advantage of supporting the beam

at its center is that it prevents excessive damping from the supports as in
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the case of a cantilevered or a simply supported beam. Unfortunately, the
disadvantage 'for a center supported beam is that the center point is the
antinode of the odd mode vibration of the beam, and that a load at the
antinode will produce a notable impact. If the load is a mass, it will only
Tower the resonance frequencies; i1f it is a resistance, it will not only lower
the resonance frequencies but also increase the damping [124].

After extensive trials with wax, stud, glue and tape, the double sided
adhesive thin tape has been chosen for mounting the specimens. Wax is not
ideal, because a mounting with less wax tends to be too loose while the
specimen is vibrating, and if too much wax is used, the measured damping ratio
will be very high. Although the stud mounting is stable enough, it tends to '
decrease the resonance frequencies and increase the damping ratio value
significantly. Glue mounting is also stable, but the surface area of contact
between the beam and the impedance head is often too large, hence the measured
damping ratic value will tend to be higher than that of the specimen under
test.

In order to get a rather stable and minimally damped support for making
damping measurements, a narrow piece of carpet tape about 1 mm in width was
stuck at the center of the beam perpendicular to the length o¥ the beam.
Since the tape is very thin, it was necessary to keep the beam balanced. This
was done by ensuring that the gap between the beam and the impedance head on

either side of the tape mounting is the same.

Selection of Excitation

There are several kinds of signals generated by the B&K Dual Channel
Signal Analyzer Type 2032. Pseudo-random noise is a self-windowing function,

and it is often used as the excitation in measuring the frequency response of
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fairly linear systems, particularly for lightly damped resonances, because the
self-windowing functions generate 'no leakage while obtaining the Fast Fourier
Transform. Without a self-windowing excitation, even with a Hanning Window,
energy could leak from a lightly damped resonance into adjacent spectrum
Jines. The resulting spectrum would show greater damping than it actually
exists. Furthermore, pseudo-random noise gives the frequency response much
faster when compared to the random noise excitation. Because the Tatter is a
true noise, it must be averaged for several time records before an accurate
frequency response can be determined [125].

Another aspect of the excitation is its amplitude. The rule of thumb for
selecting a suitable amplitude is that the excitation must be strong enough to
get the needed signal to noise ratio, and must not be so strong as to damage

the stability of mounting and linearity of the system.

Eliminaticn of Noise in Measurements

Electrical Nojse ' -

Electrical noise may be eliminated by properly grounding tﬁe measuring
instruments according to their specifications. It is necessary to point out
that the housing of the impedance head should be isolated from the grounded
shaker with a specially made electrically isolated stud and a mica washer.

There is often an electrical noise at the center frequency of the
frequency span in the frequency response measurements made by B & K 2032
Analyzer. In order to avoid this type of noise, it is suggested that the

resonance frequency of the specimen be not selected as the center frequency of

Zoom measurements.
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Mechanical Noise

Sometimes vibration coming from the foundation of the shaker very much
effects the measurements. A piece of soft foam may be inserted beneath the
shaker. This acts as a cushion and was found to be quite helpful in
preventing such disturbance. But in the case of measurements taken inside a
vacuum chamber, since the foam is often full of dust which is harmful for the
vacuum pump, a vibration isolater with very low resonance frequency (just a
few Hertz) was used in place of soft foam.

Another problem is the force or vibration coming from the cables
connected to the impedance head. Compared with the weight of the specimen,
the disturbance of the cables is rather heavy, although the cables are soft
and light. Keeping the cables as straight as possible to prevent them from
bending and putting the cables on a cushion to damp out their vibration may
solve this problem. But when working inside the vacuum chamber, it was found
difficult to do so, because the space in the bell jar was very.-restricted.
Therefore, it is suggested that softer and Tighter cables be used while making

-

measurements in a vacuum chamber.

Further Check of the Measured Results

After the above problems having been considered, the accuracy of the
measured results improved to a great extent. In order to make sure that the
experimental results were reliable, further check was always conducted during
the measurement procedure. The signal to noise ratio and coherence between
the two channels were observed for each measurement. The optimum requirements

were found to be a signal to noise ratio of over 20dB, a coherence of over
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0.91, and a very small difference between the frequency responses H2 and Hl1

measured by the B&K Analyzer. At the same fime, the repeatability of several
successive results was also observed. It was found that as the signal to
noise ratio, coherence and the value of the damping ratio decreased, the
difference between H2 and Hl and the resonance frequency increased quickly.
The reason was most often found to be related to the mounting of the beam

which probably got slack.

Experimental Study of Damping of Jointed Specimens

This section contafns the results of experiments conducted on beam type
specimens with and without joints. The joints studied herein were made from
pieces of graphite epoxy beam type specimens. Damping measurements were made
on the following type of jointed specimens. 1. Bolted Single Lap Joint (Fig.
64), 2. Bonded Double Lap Joint (Fig. 65), 3. Bolted Double Lap Joint (Fig.
66), 4. Bonded-Bolted Double Lap Joint (Fig. 66), 5. Bonded Scarf Joint
(Fig. 67), and 6. Bolted Butt Joint (Fig. 68). The measured damping ratios
for these jointed specimens are shown in Table 9. The damping rafio value of
specimens without joints was also measured under identical conditions when
measurements were made on each of the jointed specimens. All the values of
damping ratio reported in Table 9 were obtained after conducting about ten
trial runs on each specimen. This was done to ensure repeatability of the
results. Also each time a measurement was made it was checked for accuracy
using the methods described earlier.

The following conclusions may be drawn from the summary of results

presented in Table 9.
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The damping ratio of a graphite epoxy beam without joints is of the order

of 0.05% to 0.06%. Compared to the earlier results lTisted in Tables 3,4 and
7, the latest data are about one half of the previous ones. According to
Plunkett [128], if measurements are taken on similar specimens, at the same
stress level and by comparable methods, usually the lowest reported value of
damping is most likely to be closer to the correct value. The actual material
damping will probably be lower than any of the values that are measured.
Also, there might have been some little differences in the material used for
making the specimens whose damping values are reported in Tables 3,4 and 7 and
those values reported in Table 9.

The damping ratio value of jointed beams is found to be higher than that
of the specimens without joints. This conclusion also differs from the
earlier one described in pages 142 and 149.

It appears that the damping ratio values tend to increase when the beams
are bolted together than when they are just bonded together. The damping
ratio value for a double lap joint is higher than that of a single lap joint.

Lastly the difference in the damping ratio values measured under
atmospheric conditions and in a vacuum (0.1mm Hg) seems to be not very
significant. The possible reason is that the damping measurementg’might have

been affected by the connecting cables used for the impedance head.
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*Table 9
Damping of Various Graphite Epoxy Beams
Beam Mode Resonance Frequency Damping Ratio
No. Type & Size No. Atmospheric 0.1 mm Hg Atmospheric 0.1 mm Hg
Without Joints 1 352Hz 0.06%
1 254x28.4x2.65mm 356Hz 357Kz 0.05% 0.04%
3 1871Hz 0.04%
Without Joints 1 472Hz 0.06%
2 200x15x2.5mm
Bolted Single 1 343Hz 0.11%
Lap Joint 344Hz 344Hz 0.11% 0.10%
3 254x28.4mm
Fig. 64 3 1618Hz 0.12%
Bonded Double
Lap Joint
4  190x15mm, 1 1028Hz 0.09%
Fig. 65
Bolted Double =
Lap Joint )
5 300x15mm, 1 1020Hz 0.11%
Fig. 66 e
Bonded-Bolted
~ DoubTle Lap Joint
6 300x15mm, 1 1021Hz 0.22%
Fig. 66 -
Bonded Scarf
Joint
7  200x15x2.5mm 1 509Hz 0.16%
Fig. 67
Bolted Butt 1 222 0.51%
Joint
8 254x28.4mm 3 1259 0.11%
Fig. 68



¢

10.

11.

12.

13.

BIBLIOGRAPHY

McRoberts, J.J., Space Telescope, NASA EP-166, Pub. by NASA,
Washington, D.C.

Davis, L.P., Wilson, J.F., Jewell, R.E., and Roden, J.J.,
“Hubble Space Telescope Reaction Wheel Assembly Vibration
Isolation System," Paper presented at the Damping 86 Workshop,
Las Vegas, NV, AFWAL-TR-86-3059, Vol 1, PP. BA1-BA22.

Ghitelman, D., The Soace Telescope, Gallery Books, N.Y., 1987.

Bert, C.W., "Material Damping: An Introductory Review of
Mathematical Models, Measures and Experimental Techniques,”
Journal of Sound and Vibration, 29(2), 1973, pp. 129-153.

Lazan, B. J., Damoing of Materials and Members in Structural
Mechanics, Oxford, Pergamon press, 1968.

Scanlan, R.H., "Linear Damping Models and Causality in
Vibrations," Journal of Sound and Vibration, 13, 1970, pp. 499-
503.

Crandall, S.H., "The Role of Damping in Vibration-Theory,"
Journal of Sound and Vibration, 11, 1970, pp. 3-18.

Pinsker, W., "Structural Damping,” Journal of the Aerchautical
Sciences, 16, 1949, p. 699.

Naylor, V. D., "Some Fallacies 1in Modern Damping Theory,”
Journal of Sound and Vibration, 11, 1970, pp. 278-280.

Nashif, A. D., Jones, D.I.G., and Henderson, J.P., Vibration
Damping, John Wiley & Sons, New York, 1985.

Plunkett, R., "Friction Damping," Damping Application for
Vibration Control, Torvik, P. J., ed., ASME Winter Annual
Meeting, Chicago, 1980, pp. 65-74.

Bert, C.W., and Clary, R.R., "Evaluation of Experimental Methods
for Determining Oynamic Stiffness and Damping of Composite
Materials," Composite Materials-Testing and Design (third

conference), ASTH STP 546, 1974, pp. 250-265.

Chu, F. H., and Wang, B. P., "Experimental Determination of
Damping in Materials and Structures," Damping Application for

187



g

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

188

Vibration Control, Torvik, P.J., ed, ASME Winter Annual Meting,

Chicago, 1980, pp. 113-122.

Crawley, E.F., and Mohr, D.G., "Experimental Measurements of
Material Damping in Free-Fall with Tunable Excitation,” Paper
No. 83-0858, Proc. AIAA/ASME/ASCE/AHS Structures, Structural
Dynamics, and Materials Conference, Lake Tahoe, May 1883.

Sheen, R.F., and Crawley, E.F., "Experimental Measurement of
Material Damping for Space Structures in Simulated Zero-G,"
M.I.T. Space Systems Laboratory, No. 1-84, December 1983.

Asher, G.W., "A Method of Normal Mode Excitation Utilizing
Admittance Measurements," Proceedings_of the National
Specialists Meeting on Dynamics and Aerocelasticity, Fortworth,
TX, Institute of Aeronautical Sciences, 19539, pp. 69-76.

Zhu, G.H., Crocker, M.J., and Rao, M.D., "Data Processing and
Accuracy Analysis of Damping Measurement,” Submitted to the
Journal of The Acoustical Society of America.

Harris, C.M., and Crede, C.E., Shock and Vibration Handbook
McGraw Hi11l, New York, Second edition, 1976.

Richardson, M., "Modal Analysis Using Digital Test Systems-
Seminar on Understanding Digital Control and Analysis in
Vibration Test Systems,” Shock and Vibration Information .Center
Publication, NRL, Washington, D.C., May 1975. -

Brown, D.L., Allemang, R.J., Zimmerman, Ray and Mergeay, M.,
"parameter Estimation Techniques for Modal Analysis," SAE paper
No. 790221, 1979.

Ramsey, K.A., "Effective Measurements for Structural Dynamics
Testing - part II," Sound and Vibration, April 1976, pp. 18-31.

Brown, D.L., Carbon, G. and Ramsey, K., "Survey of Excitation
Techniques Applicable to the Testing of Automotive Structures,”
SAE paper No. 770029 1977.

Pendered, J.W., and Bishop. R.E.D., "A Critical Introductidﬁ to
Some Industrial Resonance Testing Technique,” Journal of

Mechanical Engineering Science, 5(4), 1963, pp. 345-367.

Kennedy, C.C., and Pancu, C.D., "Use of Vectors in Vibration
Measurement and Analysis," Journal of Aerospace Science, 14(11),
1975, pp. 603-625.

Ewins, D.J., Modal Testing - Theory and Practice, John Wiley and
Sons, Inc., 1984.




¢

€

¢

(

26.
27.
28.
29.
30.
31,

32
33,
34.

35.

36.
37.

38,

Klosterman, A.L., "On the Experimental Determination and Use of
Modal Representations of Dynamic Characteristics,” Ph.D. Thesis,
University of Cincinnati, 1871.

Gaukroger, D.R., Skingle, C.W., and Heron, K.H., "Numerical
Analysis of Vector Response Loci," Journal of Sound and
Vibration, 29(3), 1973, pp. 341-353.

"

Marples, V., "The Derivatien of Modal Damping Ratios from
Complex - Plane Response Plots," Journal of Sound and Vibration,
31(1), 1973, pp. 105-117.

Woodcock, D.L., "Cn the Interpretation of the Vector Plots of
Forced Vibrations of a Linear System with Viscous Damping,”
Aeronaut. Quart., 14(1), 1963, pp. 45-62.

Manetje, J.J., "Transfer Function Identification Using a
Complex-Plane Response Plots," Journal of Mechanical Engineering
Science, 15(5), 1973, pp. 339-345.

Richardson, M.H., and Formenti, D.L., "Parameter Estimation from
Frequency Response Measurements Using Rational Fraction
Polynominals,” Proc. of 1st Intl. Modal Analysis Conference,
published by Union College, Schenectady, New York, 1982, p. 167.

DMTA - Dynamic Mechanical Thermal Analyzer, Instruction Manual
Polymer Laboratory, England.

Read, B.E., and Dean, G.D., The Determination of Dynamic
Properties of Polymers and Composites, John Wiley and Sons,
Inc., NY 1978, Chapter 2. i

Fahy, F., "Measurements of Input Power to a Structure," Journal
of Sound and Vibration, 10(3), 1969, pp 517-518.

Nakayama, K., and Crocker, M.Jd., "Prediction of Vibration Energy
Flow in a Rectangular Box with Application to Operator
Enclosures," Report No. 2, R.W. Herrick Laboratorjes, Purdue
University, Report No. HL 79-11 1979.

Lyon, R.H., Statistical Energy Analysis of Mechanical Systéms,
M.I.T. press, 1975.

Cremer, L., Heckl, M., Ungar, E.E., Structureborne Sound
Springer-Verlag, New York, 1973.

Clarkson, B.L., &nd Pope, R.J., "Experimental Determination of
Modal Densities and Loss Factors of Flat Plates and Cylinders,*”
Journal of Sound and Vibration, 77(4), pp. 535-549.

189



| Cf

K

39.
40.

41.

42.

43,
44,

45.

46,

47.

43,

49,

50.

190

Ranky, M. F., and clarkson, B.L., "Frequency Average Loss
Factors of Plates and Shells," Journal of Sound and Vibration,

89(3), 1983, pp. 309-323.

Clarkson, B.L., and Brown, K.T., ™Acoustic Radiation Damping,"
ASME publication, §5-DET-24 1985.

Oberst, H. and Frankenfeld, K., "Uber die Dampfung der
Biegeschwin-gurgen dunner Bleche durch festhaltende Belage,”
Acoustica, 2, Leaflet 4, AB, 19852, 181-194, part I, and Vol. 4,

ASTM Std. E756-83, standard Method for Measuring Vibration-
Damping Properties of Materials.

Nashif, A.D., "New Method for Determining Damping Properties of
Viscoelastic Materials," Shock and Vibration Bulletin, 36(4),
1967, pp. 37-47.

Jones, D.I.G., "An Alternative System for Measuring Complex
Dynamic Modulf of Damping Materials,” Shock and Vibration
Bulletin, 45(5), 1975, pp-. 99-1086.

cannon, C.M., Nashif, A.D./ and Jones, D.I.G., "Damping
Measurements on Soft Viscoelastic Materials Using a Tuned Damper
Technique,” Shock and Vibration Bulletin," 38(3), 1968, pp. 154-
163.

Richter, H.P.H., "photographic Method for Measuring Material
Damping and Dynamic Young's Modulus at low Frequencies Applied
to a Fiberglas Reinforced Resin Structure,” Proceedings of the
18th Annual Technical and Management Conference, “Soc. of
Plastics Industry, Inc. Sect. 4-D 1963.

Rodden, W.P., and Whittier, J.S., “Damping of Shaker-Excited
Beams Calculated Solely from Displacement Amplitude
Measurements, J. Acoust. Soct. of Am., 34(4), April 1962, p.
469. i

Bland, D.R., and Lee, E.H., wcalculation of Complex Modulus of
Linear Viscoelastic Materials from Vibrating Reed Measurements,”
J. Appl. Phys.,26(12), Dec. 1955, p. 1497.

Granick, N., and Stern, J.E., “Material Damping of Aluminum by a
Resonant - Dwell Technique,” NASA TN D-2893, 1965.

Wambsganss, M.W., Jr., Boers, B.L., and Rosenberg, G.S. "Method

for Identifying and Evaluating Linear Damping Models in Beam
Vibrations, " Shock and Vibration Bulletin, 36, 1967, pp. 65-74.




N

51.

52.

53.

B4.

56.

57.

58.

59.

€0.

61.

62.

63.

Gibson, R.F., Yau, A., and Riegner, D.A., "An Improved Forced-
yibration Technique for Measurement of Material Damping,”
Experimental Techniques 6(2), April 1962, pp. 10-14.

Gibson, R.F., and Plunkett, R., "A Forced Vibration Technique
for Measurement of Material Damping,” Experimental Mechanics,
17(8), August 1977, pp. 297-302.

Sekiguchi, H., and Asami, T., "Measurement of Large Damping,”
Bulletin of JSME, 25(204), 1682, pp. 986-993.

Hillier, K.W., "The Measurement of Damping Elastic Properties,”
Proaress in Solid Mechanics 2, North-Holland Publishing Co.,
Amsterdam, 1961, pp. 201-243.

Bert, C.W., "Composite Materials: A Survey of the Damping
Capacity of Fiber Reinforced Composites," Damping Application
for Vibration Control, ed. Torvik, P.J., ASME publication, AMD-
Vol. No. 38, 1980, pp. 53-63.

Gibson, R.F., and Wilson, D.G., “Dynamic Mechanical Properties
of Fiber-Reinforced Composite Materials,” Shock and Vibration
Digest, 1979, pp. 3-11.

Gibson, R.F., "Recent Research on Dynamical Properties of Fiber
Reinforced Composite Materials and Structures,” Shock and
Vibration Digest, 15(2), 1983, pp. 3-15.

Schultz, A.B., and Tsai, S.W., "Dynamic Moduli and Damping
Ratios in Fiber-Reinforced Composites,” Journal of Composite
Materials, 2(3), 1968, pp. 368-378. P

Jones, E.R., et al., "Damping Measurement of a Controlled
Composite Material," J. Acoust. Soc. Am. (57), 1975, pp. 1465-

Rehfield, L.W., Briley, R.P., and Putter, S., "Dynamic Tests of
Graphite/Epoxy Composites in Hygrothermal Environments,”
Composites for Extreme Environment, ASTM, STP 768, 1982, pp.
148-160.

Leung, C.L., "Space Environmental Effects on Graphite Epoxy
Composites," Composites for Extreme Environments, ASTM STP 768,
1982, pp. 110-117.

Shen, Chi-Hung, and Springer, G.S., “Moisture Absorption and
Desorption of Composite Materials,” J. Comp. Materials, 10(1),
1976, pp. 2-20.

Loos, A.C., and Springer, G.S., "Moisture Absorption of
Graphite-Epoxy Composites Immersed in Liquids and in Humid Air,"
J. Comp. Materials, 13(4), 1979, pp. 131-147.

191



¢

¢

64.

65.

66.

67.

68.

69.

_70.

71.

72.

73.

74,

75.

192

Loos, A.C., and Springer, G.S., "Moisture Absorption of
Polyester-E. Glass Composites,” J. Comp. Materials, 14(4), 1980,
pp. 142-153.

Jones, D.I.G., "Viscoelastic Materials for Damping
Applications,” Damping Application for Vibration Control, ed.
Torvik, P.J., ASME publication, AMD-Vol. 38, 1980, pp. 27-51.

Yakovlev, A.P., and Bykovskii, A.I., "Study of the Damping
Properties of Certain Types of Glass Textolites at Various
Temperatures,” Strength of Materials, 4(6), 1972, pp. 681-635.

Clary, R.R., "Vibration Characteristics of Unidirectional
Filamentary Composite Material Panels," Composite Materials:
Testing and Design (2nd Conf.) ASTM STP 497, 1972, pp. 415-438.

Mazza, L.T., Paxson, E.B., and Rodgers, R.L., "Measurement of
Damping Coefficients and Dynamic Modulus of Fiber Composites,”
U.S. Army Aviation Materials Laboratories, USAAV LABS-TN-2 (NTIS
Document AD-869025, 1970).

Paxson, E.B., Jr., "Real and Imaginary Parts ofrthe Complex
Viscoelastic Modulus for Boron Fiber Reinforced Plastics,” J.
Acoust. Soc. Am., 57(4), 1975, pp. 891-838.

Adams, R.D., and Bacon, D.G.C., "Effect of Fiber Orientation and
Laminate Geometry on the Dynamic Properties of Carbon-Fiber-
Reinforced Plastics," J. Comp. Materials, 7(4), 1973,-402-428.

Schultz, A.B., and Tsai, S.W., "Measurement of Complex Dynamic
Moduli for Laminated Fiber-Reinforced Composites,":d. Comp.
Materials Vol. 3, 1969, p. 434. .

Suarez, S.A., "Optimization of Internal Damping in Fiber
Reinforced Composite Materials," Ph.D. Dissertation, University
of Idaho, Dec. 1984.

Suarez, S.A., Gibson, R.G., Sum, C.T., and Chaturvedi, S.K.,
“The Influence of Fiber Length and Fiber Orientation on Damping
and Stiffness of Polymer Composite Materials,” presented at the
“Damping 86" workshop, March 5-7, 1986, Las Vegas, NV. '

Kishore, N.N., Ghosh, A., and Agarwal, B.D., *Damping
Characteristics of Fiber Composites with Imperfect bonding, Part
1," Journal of Reinforced Plastics and Composites, Vol. 1, Jan.
1982, pp. 40-63.

Kishore, N.N., Ghosh, A., and Agarwal, B.D., "Damping
Characteristics of Fiber Composites with Imperfect Bonding, Part
II," Journal of Reinforced Plastics and Composites, Vol. 1, Jan.
1982, pp. 64-8l.




¢

¢

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

Nelson, D.J., and Hancock, J.W., “Interfacial S11p and Damping
in Fiber Composites,” Journal of Materials Science, Vol. 13,
1978, pp. 2429-2440.

Nelson, D.J., "Dynamic Testing of Discontinuous Fiber Reinforced
Composite Materiels," Journal of Sound and Vibration, 64(3),
1979, pp. 403-419.

Gibson, R.F. and Plunkett, R., "Dynamic Mechanical Behavior of
Fiber Reinforced Composites: Measurement and Aalysis," J.
Comp. Materials, 10, 1976, pp. 325-341 (1976).

Adams, R.D., et al., "A Vibration Technique for Non-Destrutively
Assessing the Integrity of Structures," Journal of Mechanical
Enaineering Science, 1978, 2(2).

Cawley, P., and Adams, R.D., "A Vibration Technique for Non-
Descructive Testing of Fiber Composite Structures," J. Comp.

Materials, Vol. 13, 1979, p. 161.

Cawley, P., and Adams, R.D., "The Location of Defects in
Structures from Measurements of Natural Frequencies,” Journal of
Strain Analysis, 1979, 14(2),.

Schultz, A.B., and Warwick, D.N., "Vibration Response: A Non-
Destructive Test for Fatique Crack Damage in Filament -
Reinforced Composites,” J. Comp. Materials, 5(3), 1971, pp. 3%4-
404. ’ -

DiBenedetto, A.T., et al., "Non-Destructive Determination of
Fatigue Crack Damage in Composites Using Vibrationp Tests,”
Journal of Materials, 7(2), 1972, pp. 211-215.

Kim, H.C., and Mattews, F.L., "Hysteresis Behaviors in Carbon
Fiber-Reinforced Plastics," Journal of Physics, Series 2,
Vol.6D, No. 15, 1973, pp. 1755-1761.

Hashin, Z., "Complex Moduli of Viscoelastic Composite: II,
Fiber Reinforced Materials," Int. J. Solids Struc., 6{6)}, 1970,
pp. 797-807. .

Chang, S., and Bert, C.W., "Analysis of Damping for Filamentary
Composite Materials,” Composite Materials in Engineering Desian,
Metals Park, OH, 1973, pp. 51-62.

Mi, R.G., and Adams, R.D., "the Damping and Dynamic Moduli of
Symmetric Laminated Composite Beams - Theoretical and
Experimental Results," J. Comp. Materials, 18, 1984, pp. 104~
121.

193



¢

¢

¢

88.

89.

92.

93.

. g4.
95.

g6.

98.

99.

194

Lin, D.X., Ni, R.G., and Adams, R.D., "Prediction and
Measurement of the Vibration Damping Parameters of Carbon and
Glass - Fiber Reinforced Plastic Plates,” J. Comp Materials,
18(3), 1984, pp. 132-152.

Cawley, P., and Adams, R.D., “The Predicted and Experimental
Natural Modes of Free Free CFRP Plates," J. Comp. Materials,
12(10), 1978, p. 336.

Hwang, S.L., and Gibson, R.F., "Micromechanical Modeling of
Damping in Discontinuous Fiber Composites Using a Strain
Energy/Finite Elemant Approach," Paper presented at ASME Winter
Annual Meeting, Miami Beach, FL, 85-WA/MATS-3 Nov. 1885.

Hwang, S.J., "Finite Element Modeling of Damping in Discontious
Fiber Reinforced Composites,” M.S. Thesis, University of Idaho,
April 1985.

Johnson, €.D., and Kienholz, D.A., "Finite Element Prediction of
Damping in Structures with Constrained Viscoelastic Layers,”
AIAA Journal, 20(9), 1982, pp. 954-957.

Beards, C.F., "Damping in Structural Joints", Shock Vib, Dig.
11(9), Sept. 1979, pp. 35-41.

Beards, C.F., and Williams, E.J., "The Damping of Structural
Vibration by Rotational Slip in Joints," J. Sound Vib., 53(3)
1977, pp 33-34. -

Beards, C.F., and Imam, I.M.A., "The Damping of Plate Vibration
by Interfacial Slip between Layers,” Intl. J. Mach. Tool Des.
Res., 18, 1973, pp. 131-137.

Farles, S.W.E. and Mansoori, F.5., "Frictional Damping Applied
to a Cantilever Beam Structure: A Theoretical and Experimental
Response Comparison." Int. J. Mach. Tool Des. 14, 1974, pp. 111-
124, )

Tomlinson, G.R. and Hibbert, J.H., "Identification of the
Dynamic Characteristics of a Structure with Coulomb Friction,”
J. sound Vib., 64, 1979, p. 3. :

Farles, S.W.E., "Theoretical Estimation of the Frictional Energy
Dissipation in a Simple Lap Joint," J. Mech. Engr. Sci., 8,
1966, pp 207-214.

Williams, D., “Method of Damping out Bending Vibration of Beam-
like Structures by Dry or Coulomb Friction,"” J. Mech. Engr.
Sci., 2, 1960, pp. 77-87.




100.
101.

102.

105.
106.
~107.
108.
109.
110.
111.

112.

Maidinik, G., "Energy Dissipation Associated with Gas-pumping at
Structural Joints," JASA, 40, 1966, pp. 1064-

Ungar, E.E., and Carboneil, J.R., "On Panel Vibration Damping
Due to Structural Joints,™ AIAA J. 1966, pp. 1385-1390.

Earles, S.W.E., and Williams, E.J., "A Linearlized Analysis for
Frictionally Damped Systems,” J. Sound Vib., 1972, pp 445-458.

Richardson, R.S.H., and Nolle, H., "Energy Dissipation in Rotary
Structural Joints,™ J. Sound Vib., 54(4), 1977, pp 577-588.

Crawley, E.F., and 0'Donnell, K.d., "Identification of Nonlinear
System Parameters in Joints Using the Force-State Mapping
Technique,™ AIAA Paper 86-1013-CP, 27th Structures, Structural
Dynamics and Materials Conference, San Antonio, TX, 1986.

0'Donnell, K.J., and Crawley, E.F., "Identification of System
Parameters in Space Structure Joint Elements Using the Force-
State Mapping Technique," M.I.T. Space Sysiems Laboratory Report
No. 16-85. :

Goland, M., and Reissner, E., "The Stresses in Cemented Joints,”
Journal of Applied Mechanics, Vol. 11, March 1944, pp. Al7-A27.

0jalvo, I.U., and Eidinoff. H.L., "Bond Thickness Effects upen

Stresses in Single-Lap Adhesive Joints," AIAA Journal, Vol. 16,

No. 3, 1978, pp. 204-211. p

Carpenter, W.C., "A Comment on Two Current Adhesive lLap Joint
Theories,” AIAA journal, Vol. 18, No. 3, 1980, pp. 350-352.

Kline, R.A., "Stress Analysis of Adhesively Bonded Joints,”
Adhesive Joints, ed. by Mittal, K.L., proc. of the International
Symp. on Adhesive Joints, Sept. 1982, Kansas City, Missouri, pp.
587-609.

Delale, F., and Erdogan, F., "“Viscoelastic Analysis of
Adhesively Bonded Joints," Journal of Applied Mechanics, Vo.l.
48, June 1981, pp. 331-336. _

Renton, W.J., and Vinson, J.R., "Analysis of Adhesively Bonded
Joints. Between Panels of Composite Materials," Journal of
Applied Mechanics, March 1977, pp. 101-106.

Delale, F., Erdogan, F., and Aydinoglu, M.N., "Stresses in
Adhesively Bonded Joints" A closed form solution," J. Composite
Materials, vol. 15, May 1981, pp 249-271.

Hart-Smith, L.J., "Analysis and Design of Advanced Composite
Bonded Joints," MASA CR-2218, April 1974.

195



114,

115.

116.

117.

118.

119.

120.

121.

122.

123.

124,

125.

Hart-Smith, L.J., "Adhesive-Bonded Double-Lab Joints, "NASA CR-112235,
January 1973.

Hart-Smith, L.J., "Adhesive-Bonded Single Lap Joints, "NSAS CR-112236,
January 1973.

Hart-Smith, L.J., "Adhesive-Bonded Scarf and Stepped-Lap Joints, "NASA
CR-112237, January 1973.

Mead, D.J., "A Comparison of Some Equations for the Flexural Vibration
of Damped Sandwich Beam," Journal of Sound and Vibration, 83(3), 1982,
pp. 363-377.

Nakra, B.C., "Vibration Control with Viscoelastic Materials," Shock
and Vibration Digest, 8(6), 1976, pp. 3-12.

Saito, H., and Tani, H., "Vibrations of Bonded Beams with a Single Lap
Adhesive Joint," Journal of Sound and Vibration, 92(2), 1984, pp. 229-
309.

Prucz, J., "Analytical and Experimental methodology for Evaluating
Passively Damped Structural Joints, " Ph.D. Dissertation, Georgia
Institute of Technology, May 1985.

Blevins, R.D., Formulas for Natural Frequency and Mode Shape, _
Van Nostrand Reinhold Co., New York 1979,

Timoshenko, S., Young, D.H., and Weaver, W., Jr., Vibration Problems
in Engineering, 4th ed., John Wiley & Son, New York, 1974.

Baker, W.E., Woolam, W.E., and Young, D., "Air and Internal Damping of
Thin Cantilever Beams", International Journal of Mechanical Sciences,
9,1967, 743-766.

Morse, P.M., and Ingrad, K.U., Theoretical Acoustiés, McGraw-Hill,
1968,

The Fundamentals of Signal Analysis, Hewlett Packard Application Note
243, 1985, '

196






